
CitySense: An Urban-Scale Wireless Sensor Network and
Testbed

Rohan Narayana Murty?, Geoffrey Mainland?, Ian Rose?, Atanu Roy Chowdhury?

Abhimanyu Gosain†, Josh Bers†, and Matt Welsh?

? School of Engineering and Applied Sciences, Harvard University
† BBN Technologies, Inc.

Abstract
In this paper, we present the vision for an open, urban-scale wireless
networking testbed, called CitySense, with the goal of supporting
the development and evaluation of novel wireless systems that span
an entire city. CitySense is currently under development and will
consist of about 100 Linux-based embedded PCs outfitted with dual
802.11a/b/g radios and various sensors, mounted on buildings and
streetlights across the city of Cambridge. CitySense takes its cue
from citywide urban mesh networking projects, but will differ sub-
stantially in that nodes will be directly programmable by end users.
The goal of CitySense is explicitly not to provide public Internet ac-
cess, but rather to serve as a new kind of experimental apparatus for
urban-scale distributed systems and networking research efforts. In
this paper we motivate the need for CitySense and its potential to
support a host of new research and application developments. We
also outline the various engineering challenges of deploying such a
testbed as well as the research challenges that we face when building
and supporting such a system.

1 Introduction
Research progress in wireless and sensor networking in the
last decade has been astounding. Recent developments in-
clude campus-wide and community-wide wireless mesh net-
works [12, 9, 14], in-depth studies of the dynamics of wire-
less networks in mobile and static settings [13, 18, 10], and
real-world sensor network deployments in environments as
diverse as forests [27, 4], active volcanoes [28], and the
Golden Gate Bridge [19]. At the same time, to design, de-
ploy, and evaluate novel wireless systems at scale requires
substantial effort. Most research groups must be content with
simulations or small-scale, homegrown test deployments to
evaluate their ideas. Of the larger-scale wireless network
testbeds [26, 30, 3, 29, 23], most are deployed in research labs
or office buildings, representing a fairly narrow range of tar-
get environments. Moreover, one could argue that a lab-based
testbed, regardless of scale or fidelity, is “uninteresting” from
an application point of view, since the environment limits the
range of potential use cases.

At the same time, recent advances in wireless mesh rout-
ing, such as Roofnet [12] and CuWIN [17], among others,
have demonstrated the feasibility of achieving multihop wire-
less connectivity across large areas. Given the availability of
robust wireless mesh networking, we want to ask the ques-
tion, how can we support the development and evaluation
of novel wireless systems that span an entire city? In the

same way that development of TCP/IP enabled a vast range
of new applications and business models, we wonder how
urban-scale wireless mesh networking can support as-yet-
unforeseen models of communication, computation, sensing,
and interaction between users and their environment.

To this end, we envision developing an open, urban-scale
wireless networking testbed, called CitySense, that will pro-
vide an invaluable community resource for driving research
in wireless and sensor networking across an entire city. City-
Sense is currently under development and will consist of
about 100 Linux-based embedded PCs outfitted with dual
802.11a/b/g radios and various sensors, mounted on build-
ings and streetlights across a city.1 CitySense takes its cue
from citywide urban mesh networking projects, but will dif-
fer substantially in that nodes will be directly programmable
by end users. The goal of CitySense is explicitly not to pro-
vide public Internet access, but rather serve as a new kind of
experimental apparatus, much in the same way that Planet-
Lab [24] has supported research in Internet-based distributed
computing.

CitySense is designed to support research into new wire-
less mesh routing protocols, sensor networking at urban
scales, new distributed algorithms for in-network data pro-
cessing and aggregation, novel programming abstractions,
and complete applications leveraging the emplacement of the
CitySense nodes and attached sensors throughout a city. By
providing an open infrastructure, CitySense can be readily
customized to support a wide range of applications. Users
can reprogram and monitor CitySense nodes via the Internet,
allowing diverse research groups to leverage the infrastruc-
ture remotely.

Of course, there are a range of research problems we must
address in order for CitySense to be a success. Supporting re-
programmability and multiple concurrent experiments comes
at the potential cost of decreased reliability and increased re-
source contention. Moreover, since most CitySense nodes
will only be able to communicate via a wireless mesh, we
must ensure that experiments do not disrupt the backchannel
(hence the need for two radios). Remote monitoring and ad-
ministratation of CitySense nodes will require great care, as
we cannot ensure physical access to nodes for routine mainte-
nance or repairs. Frequent software updates (both for admin-
istrative tasks and end-user experiments) demands an efficient
approach to over-the-air reprogramming. Finally, in the con-

1Our current deployment target is Cambridge, MA.



text of CitySense, due to bandwidth and computational re-
strictions, merely providing users with bare-bones ssh access
to each node is unlikely to be either robust or efficient. Hence,
we must consider appropriate programming models and run-
time services to better support application deployment.

In this paper, we outline our vision for the CitySense plat-
form and how we believe it will transform wireless and sensor
networking research. We begin with motivation and a discus-
sion of related work in Section 2. In Section 3 we sketch the
design of the CitySense architecture and describe our current
prototype implementation. In Section 4 we discuss the major
research challenges that we face in designing and deploying
CitySense. Finally, Section 5 concludes our discussion.

2 The Case for CitySense
Much like how PlanetLab has enabled large scale internet re-
search, we believe CitySense as a testbed, can enable large
scale sensor and wireless networking research in a real-world
urban setting.

Two key features of CitySense are its city-wide deploy-
ment and its ability to monitor the physical world via sen-
sors. These features, coupled with significant computational
resources on each node, open up a host of new application
and research domains. We outline some of them below:

Citywide publish/subscribe: Each CitySense node can
receive, maintain, and compute new state which can then
be pushed out to other nodes in the surrounding environ-
ment. These capabilities can be used for developing pub-
lish/subscribe applications, for example, supporting mobile
users or vehicular network applications throughout the city.
The AdTorrent [22] and CarTel [2] projects are studying the
effect and feasibility of prepositioning content for mobile
users in an urban setting. An infrastructure such as CitySense
would serve as an ideal back end in such a setting. City-
Sense nodes could track the trajectory of a moving vehicle (or
802.11 device), estimate a probable future trajectory, and then
pre-position content which is finally delivered to the moving
vehicle. Likewise CitySense nodes could be used as collec-
tion and aggregation points for data collected by a vehicular
network; providing not just network connectivity but also lo-
calized computational resources throughout the city.

Location integrated applications: A host of new collab-
orative applications can leverage user and wireless device lo-
cations. For example, consider a “Where am I?” applet for a
social networking site, such as Facebook, that allows a user
sign up and display their locations during the day, or a system
that would permit users in nearby physical locations to post
and read “digital graffiti” [9, 7].

Real-time network monitoring: CitySense has the poten-
tial to open up large scale realtime network monitoring of the
various city-wide WiFi networks, for studying performance
and deployment characteristics, analysing security risks, and
identifying malicious behaviors. Much like Jigsaw [15] and
DAIR [10], which are intended to monitor and diagnose in-
door enterprise networks, CitySense could be used to monitor
chaotically deployed WiFi networks in and around a city.

Sensornet applications: We expect various CitySense
nodes to feature a diverse set of sensors, including weather
conditions, air and water pollutants, biochemical agent con-
centrations, and more. In contrast to most work in wire-

less sensor networks, which is concerned with severe power
constraints and hence limited CPU, memory, and bandwidth,
CitySense represents a regime with much more substantial
per-node resources. As such we envision CitySense acting as
a testbed for future sensor platforms and applications that can
leverage the increased capacity.

Evaluation: Apart from the applications described above,
CitySense intends to provide a realistic evaluation testbed for
wireless and sensor networking researchers themselves. For
example, we hope that CitySense provides a valuable test har-
ness for studying real systems on an urban scale, support-
ing research in wireless mesh routing, distributed algorithms,
sensor fusion and data aggregation, and programming mod-
els.

While it would be possible to leverage CitySense for pro-
viding public Internet access, this is not our focus. A number
of successful projects, including Roofnet [12], CuWin [17],
and others [1, 8], have demonstrated the efficacy of wire-
less mesh for providing urban-scale network connectivity.
Our goal is to build upon these efforts and provide a pro-
grammable, customizable research facility. Shifting the focus
away from public Internet access frees us from the require-
ment to provide a stable, high-performance mesh focused on
serving Web pages and VOIP calls. Indeed, the requirements
of a production-quality wireless mesh run counter to our goal
of offering an open, programmable environment, which we
expect some users to break.

There exist other open research testbeds in the systems and
networking community that have each come into their own in
the recent past. Apart from the well-known PlanetLab [24]
and Emulab [30] systems, significant wireless and sensor
testbeds include ORBIT [26], Kansei [5], MoteLab [29], Mi-
rage [23], and Mint [6]. These systems differ in terms of
scale, node capabilities, programming model, and so forth;
though all of them are indoor, laboratory-based testbeds, typ-
ically using wired backchannels to each node for remote man-
agement.

3 The CitySense Architecture and Prototype
The impetus for CitySense arose from recent work on city-
wide wireless mesh networking, including the RoofNet [12],
CUWin [17], and TFA [14] projects to provide connectivity
to communities using inexpensive wireless equipment. While
those projects were focused on the networking layer for pro-
viding general-purpose Internet connectivity, the key real-
ization is that mesh router nodes (often based on embedded
Linux PCs) could be augmented with a range of sensors as
well as opened up to remote programming by end users.

Realistic sensor network applications are now demand-
ing much larger networks, distributed over wider areas, with
higher data rates and more sophisticated processing require-
ments. Large-scale monitoring of pollutants in an urban envi-
ronment, is such an example. By distributing a large network
of high-quality sensors over an entire urban area, monitoring
airborne pollutants as well as related metrics such as wind ve-
locity, humidity, temperature, rainfall, and automobile traffic,
it will be possible to develop detailed, high-resolution mod-
els of the impact of pollution down to the specific street and
neighborhood level. Existing approaches to pollution mon-
itoring make use of very few, widely distributed sensors or



 

Harvard gateway

BBN gateway

Contaminant source

Figure 1: Conceptual Deployment of Sensor Nodes in Cam-
bridge, MA.

handheld monitors used to manually collect data along streets
and sidewalks [21].

In such urban applications, individual sensor nodes can be
placed atop streetlights and powered continuously, avoiding
the requirement of low-power operation. In addition, to cover
a large urban area the distance between any two sensors must
be generally greater than the (ideal) 100m obtained by low-
power WPAN (802.15.4) zig-bee radios, necessitating higher-
power solutions. Finally, the application’s data requirements
involve multiple channels, high data rates, and complex pro-
cessing at the node level. In the spectrum of sensor network
designs, we see a compelling need for higher-power, more
capable sensor nodes than those used in low-power, battery-
operated deployments.

Over the next few years, we plan to deploy approximately
100 sensor nodes distributed throughout an urban area. Our
current deployment target is Cambridge, MA (see Figure 1)
and is pending approval by the municipal government. Each
node is linked to its neighboring nodes via 802.11-based
wireless mesh. We have designed an enclosure that enables
a sensor node to be mounted on a city streetlight, which also
provides power to the node.

The CitySense testbed design and node hardware is pow-
erful and flexible enough to support both ends of the sensing
application spectrum, from long term sensor data collection
studies to real-time sensor data monitoring. Each sensor node
will consist of a reprogrammable, reconfigurable base plat-
form, multiple environmental sensors (including temperature,
humidity, wind speed and direction), and high-bandwidth
802.11 radios outfitted with high-gain omnidirectional anten-
nas.

A unique feature of the CitySense design is the availabil-
ity of power from the streetlight mounting. While past sen-
sor networks have by necessity mandated very lightweight
processing and communications power [25], we are not con-
strained by battery longevity. This freedom enables us to
opt for the powerful Soekris net4826 motherboard (Figure 2).
Matched with a Linux based OS, the Soekris platform enables
rapid development using standard software tools. Coupled
with high transmit power 802.11a/b/g miniPCI radio cards,
our sensor nodes combine ample local processing power with
high-bandwidth wireless connectivity.

Figure 2: Sensor Node Hardware. Top: The Soekris net4826
mounted in enclosure with power supply at left. Bottom:
NEMA-6 weatherproof enclosure mounted on streetlight arma-
ture with Vaisala WXT510 Weather Sensor attached (WiFi an-
tennas not shown).

Apart from the sensor nodes themselves, the CitySense
testbed includes wireline gateway nodes linking the wireless
mesh to the Internet, as well as back-end servers providing
services for reprogramming and monitoring the testbed, stor-
ing data generated by user jobs, and a Web-based interface to
end users.

3.1 Urban Deployment Considerations
The outdoor urban environment presents several challenges
to the design of a wireless network of sensors. These include:
physical environment factors, network coverage, and network
security.

3.1.1 Physical environment
Extreme weather, theft and vandalism, and malfunctioning
hardware are realities that we expect to face when deploying
our network in an outdoor urban environment. We hope to in-
stall CitySense nodes atop of streetlight fixtures, as shown in
Figure 2. Each streetlight has a standardized, screw-in con-
nector for the photo-sensitive switch that turns on the light
when it is dark. A standardized screw-in tap can be attached
to draw off continuous electrical power (AC) for the City-
Sense node.

For outdoor deploymet, a weatherproof housing is needed
for both CPU and sensors. We have selected a NEMA-6 en-
closure from PacWireless (see Figure 2).2 During the winter

2http://www.pacwireless.com/products/DCE.shtml



of 2006-2007, we measured the temperature differential be-
tween the environment and the inside of a node powered via
power over Ethernet (PoE). During cold days, we recorded a
+10◦C average differential. The presence of the power supply
within the enclosure should provide a large enough differen-
tial that operation will be possible on very cold days. We plan
to perform tests this summer on how well the unit performs
in high-temperatures to determine if some form of venting is
needed.

Our meteorological sensor, the Vaisala WXT510, ensures
low maintenance by having no moving parts and by provid-
ing a heater that allows operation in air temperatures ranging
from -52◦C to +60◦C.

3.1.2 Network Coverage
The streetlight mounting benefits network connectivity be-
tween CitySense nodes in two ways. First, it leverages the
natural line-of-sight paths provided by roadways. Second, the
uniform mounting height, roughly 10 meters above the street
level, helps RF reception range by reducing the strength of
the ground reflected signal as well as the probability of inter-
ference from non-CitySense ground-based RF emitters such
as WiFi radios in private laptops and access points.

To ensure that mesh connectivity is maintained in the face
of unplanned node outages, our inter-node spacing will be
roughly less than half the range for the radios. This ensures
RF overlapping such that two nodes will not lose connectiv-
ity should a single intermediate node fail. Our initial spacing
will be based upon estimates, however, we will experimen-
tally validate our estimates prior to deployment.

3.1.3 Network Security
Security and interference are critical concerns in urban en-
vironments where many private 802.11 networks may exist.
CitySense will use a two-layer approach to security. At the
link layer, we employ WPA encryption to ensure that pas-
sive listeners cannot snoop on the CitySense network. At the
transport layer, applications will use a secure transport layer
protocol, e.g., SSL or SSH, to perform all inter-node commu-
nications. Due to the potential for snoopers to crack the WEP
keys over time, we will periodically distribute new keys to the
nodes using a secure transport protocol.

3.2 Software environment
Each node runs an embedded Linux distribution, enabling us
to use many available tools for network monitoring and man-
agement. For mesh connectivity, we are currently making use
of the Optimized Link State Routing protocol (OLSR), since
it has been shown (via simulation) to scale well in networks
with more than 100 nodes [20]. We plan to experiment with
alternative mesh routing protocols as well.

These baseline protocols can be replaced with user de-
fined configurations so as to support the goal of providing
an open framework in which to develop and test new wireless
networking protocols in a realistic testbed. Updates to the
networking software will be made via the web-based man-
agement interface. To prevent manual intervention (literally
climbing the pole) in the case of network software failure, the
nodes operate in a failover mode. Each node monitors its con-
nectivity to the web management system and to its neighbor

nodes. A node reboots into the baseline configuration when
connectivity to the control network is lost for more than a
predefined period of time.

3.3 Sensor Hardware
We plan to select sensor hardware based on criteria such as
form factor, maintenance overhead, cost, and relevance to re-
search activities of prospective users. For the current testbed,
we have selected the Vaisala WXT510 weather transmitter,
shown in Figure 2, that measures wind-speed, direction, rela-
tive humidity, temperature, pressure and precipitation. It uses
no moving parts to lower maintenance and has a heater to en-
sure year round operation. The WXT510 unit connects to the
Soekris motherboard via its serial port.

On some nodes we will install carbon dioxide sensors, the
Vaisala GMP343. In the future, carbon monoxide and poly-
cyclic aromatic hydrocarbons (PAH) detectors may be added
to the baseline depending on the needs of supported research
projects. An option we are exploring is to incorporate and
support new sensor technologies as they emerge.

3.4 Monitoring and management
The current administrative interface to our testbed is fairly
low level and still relies heavily on standard UNIX tools (e.g.,
using ssh into each node and running commands as root).
This is clearly not a scalable or robust solution to running
a large testbed and we are planning development of further
tools to simplify this process.

We have implemented a preliminary monitoring daemon
that runs on each node and periodically runs a set of scripts to
collect information on node state, such as uptime, routing ta-
bles, and statistics on network performance (e.g., an all-to-all
ping and bulk transfer measurement performed hourly). The
output of each script is routed to a central server node where
it is logged to a database. A simple web interface provides
real-time access to the network statistics. We have also im-
plemented a simple approach to updating software on each
node based on an rsync tree, described further in Section 4.

4 Research Challenges
Our initial prototyping work on CitySense has revealed a
range of research challenges that we must address in order
to deploy the full system. Broadly, the following factors give
rise to most administrative research challenges in CitySense.

Management via wireless: Unlike most existing network
testbeds, most CitySense nodes are expected to be managed
via multihop wireless links. Each CitySense node will sup-
port two 802.11 a/b/g radios, where one radio can be devoted
to the “management mesh” and the other radio used for exper-
imental purposes. Few nodes will have wired backchannels,
owing primarily to the high cost of running wired connections
to each of the nodes. We believe this aspect of CitySense
represents the evolution of large-scale wireless systems. In
essence, the research challenge here is being able to manage a
large wireless deployment in the wild via a multihop wireless
backhaul. This raises questions of the reliability and band-
width that can be expected of the mesh, which has broad im-
plications for all management aspects of the system, includ-
ing installing software updates, syncing the remote node’s file
system, and collecting data generated by experiments. This



challenge is exacerbated by the fact that we will not have
physical access to CitySense nodes once they have been de-
ployed: one cannot simply hit the reboot switch on a node
mounted on a streetlight owned by the city. Further, a multi-
hop testbed such as this will face the parking lot problem [14].

Deployment in the wild: CitySense must coexist with a
wide range of 802.11 networks already deployed throughout
the city, and must continue operating despite wide fluctua-
tions in radio channel utilization, interference, and environ-
mental variations, including the legendary Boston winter. To
extend range between CitySense nodes, we are making use
of high-gain omnidirectional antennas, although this also in-
creases their sensitivity to (and impact on) ambient traffic. In
our initial measurements, we have seen significant variations
in achievable throughput, ranging from as much as 20 Mbps
to as little as 1 Mbps over a short (40 meters) link between
two nodes on the same rooftop! As the testbed scales up to
cover various parts of the city of Cambridge, the system must
adapt to highly variable conditions.

Resource constraints: While not severely power con-
strained, CitySense nodes do exhibit resource constraints in
terms of the CPU, memory and bandwidth availability. Al-
though the CitySense nodes run Linux, it would be a mistake
to treat them as conventional desktop or server systems: with
only 128 MB of RAM, a few poorly-designed applications
could rapidly saturate available memory. The overhead im-
posed by the management software must be accordingly low
to avoid interfering with experiments.

We believe a synthesis of these factors gives rise to a host
of system challenges that are unique to CitySense, and that
we plan to tackle as part of our work on this project.

Application programming model: It is tempting to treat
CitySense as simply a batch of conventional Linux PCs, giv-
ing users login accounts and allowing them to ssh into each
node to upload and run applications. Such an approach ig-
nores resource and bandwidth limitations, not to mention
node and link failures. Experience with application design
and deployment in PlanetLab suggests that we can do bet-
ter, by providing an appropriate set of tools and programming
APIs to support CitySense application development; for ex-
ample, a simple set of APIs to expose the physical location of
each CitySense node, the network topology and link charac-
teristics between various nodes.

Applications could make use of such a framework to de-
cide where to cache data or perform aggregation. Such op-
erations, in an urban wireless network could be location sen-
sitive. For example, a particular application may choose to
cache data on nodes that are located in a particular region.
However, we do not intend to limit application developers to
adhere to such frameworks and we wish to merely explore
the option of providing such frameworks. On the other hand,
restricting the programming model also yields a measure of
control over the application’s behavior, e.g., for resource con-
tainment.

Another aspect to explore is the possibility of providing
varying “service levels” on CitySense with differing pro-
gramming interfaces, depending on application needs.

Resource management and sharing: Closely related to
the programming model is how resources will be shared
across multiple users and applications. With such limited

memory, CPU, and bandwidth resources on nodes, this prob-
lem is even more pressing than in less resource-constrained
systems, like Planetlab. PlanetLab is adopting a containment
approach based on Xen [11], although it is unlikely this will
be effective on the embedded PCs used in CitySense. We are
also concerned with how resource sharing might affect exper-
imental results, for example.

One approach is to eschew timesharing in favor of a batch-
scheduling policy; space-sharing can be accomplished by per-
mitting different jobs to run on different partitions of the
testbed. We could potentially allow lightweight jobs (with
strictly enforced resource limits) to be intermingled with
batch jobs. Experience with real applications will give us a
better feel for which policies are most appropriate.

Reliability and failure recovery: Unlike other large-
scale systems testbeds, such as PlanetLab [24] and Emu-
lab [30], CitySense must rely chiefly on wireless communica-
tions to the individual nodes, and we cannot assume that we
will have physical access to nodes to reboot or repair them
in case of software failure. This suggests that we need to
devote a significant effort to ensure that the base CitySense
platform is robust, and that individual nodes can be restored
to a “known good” state automatically following a failure.
We plan to employ both a software watchdog timer as well as
a hardware grenade timer that physically reboots the node at
a preset time each day, regardless of its state. Further, such
timers must be staggered to prevent a total network outage.
This approach trades off slightly reduced uptimes for a high
assurance that a node can be returned to a known state each
day.

Wireless mesh routing: We wish to stress that the focus
of the CitySense project is not to innovate on wireless mesh
routing (although we hope that external users may wish to use
CitySense for this purpose). Rather, we intend to leverage
previous work on robust urban mesh routing [18, 16, 12, 17]
as much as possible to build the testbed. As part of this, we
also need to think about the impact of mutual interference
between CitySense and pre-existing networks on channel and
route selection. Further, due to various constraints around the
city (for example, the streetlights at Harvard square are gas
powered and decorative - hence we are not allowed to mount
PCs on them) we could end up with partitions in the network.
We expect to connect such partitions with 900Mhz long range
radios and this may impact various routing decisions.

Software updates: Maintaining software consistency
across 100+ CitySense nodes raises challenges in terms of
dealing with failed nodes and network links; potentially fre-
quent updates from many users; and the impact of software
updates on node reliability. To avoid high network load for
propagating updates, we have been experimenting with the
use of a spanning tree, wherein a central server node pushes
updates to a selected set of “seed” nodes, and those nodes
push updates to their children, and so forth, making use of
the rsync tool for efficient propagation of updates at each
hop. Each update to the node filesystem will be represented
by a monotonically increasing version ID, allowing a node to
easily determine whether it has the latest software installed.
Each user will have access rights to an isolated subtree of the
node’s filesystem; critical system files can only be updated
by the administrator. Rather than push updates on demand,



we expect to batch all updates each day into a single bulk
operation. Finally, we plan to maintain a golden image, on
a separate bootable partition, which nodes will fall back to
in the event of reboot or failure, which effectively disables
all user applications and only permits the node to contact a
central server for administrative control.

5 Conclusions
Mobile and wireless networking are emerging as a commod-
ity in homes and workplaces, and increasingly found in other
public spaces. As a result, usage models of computing are
branching far beyond the proverbial user at a desk, supporting
nomadic users with laptops, PDAs, and smartphones. At the
same time, the ability to instrument our environment at high
density with a broad range of sensors opens up new direc-
tions for merging observation and interaction with the phys-
ical world. To support continued innovation in these areas,
we believe that it is absolutely critical to develop large-scale
testbeds and development environments.

We envision CitySense as a unique experimental facility
that will at once spur development into new application do-
mains for wireless and sensor networking, as well as provide
an evaluation platform with significant scale and realism. In
the future, we anticipate that CitySense will play a role in
the larger GENI effort proposed by the NSF, acting as one
of many open wireless testbeds available to the GENI com-
munity. Still, substantial research challenges remain for de-
ploying and maintaining such a system. Apart from the in-
herent reliability and performance issues with wireless multi-
hop routing, we must be concerned with managing limited
node resources; efficient and frequent software updates to
the testbed; providing appropriate programming abstractions;
and contending with failures and the inherent variations in the
wireless environment throughout the city.

References
[1] Berlin roofnet. http://sarwiki.informatik.hu-berlin.

de/BerlinRoofNet.
[2] Cartel. http://cartel.csail.mit.edu/.
[3] Exscal sensor network testbed. http://ceti.cse.

ohio-state.edu/exscal/.
[4] James reserve data management systems. http://dms.

jamesreserve.edu/.
[5] Kansei: Sensor testbed for at-scale experiments. http://ceti.

cse.ohio-state.edu/kansei/.
[6] Mint, an autonomic reconfigurable miniaturized mobile wireless ex-

perimentation testbed. http://www.ecsl.cs.sunysb.edu/
mint/.

[7] Place lab. http://www.placelab.org/.
[8] Technology for all - rice wireless mesh deployment. http://tfa.

rice.edu/.
[9] Ucsd active campus. http://activecampus.ucsd.edu/.

[10] P. Bahl, J. Padhye, L. Ravindranath, M. Singh, A. Wolman, , and
B. Zill. Dair: A framework for managing enterprise wireless networks
using desktop infrastructure. In Proc. the 4th ACM Workshop on Hot
Topics in Networks (HotNets-IV), November 2005.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, pages 164–177, New York, NY, USA,
2003. ACM Press.

[12] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. Architecture and Eval-
uation of an Unplanned 802.11b Mesh Network. In Proc. Mobicom
2005, August 2005.

[13] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Mad-
den. Measurement study of vehicular internet access using unplanned
802.11 networks. In Proc. MOBICOM 2006, 2006.

[14] J. Camp, J. Robinson, C. Steger, and E. Knightly. Measurement driven
deployment of a two-tier urban mesh access network. In Proc. ACM
MobiSys 2006, Uppsala, Sweden, June 2006.

[15] Y.-C. Cheng, J. Bellardo, P. Benko, A. C. Snoeren, G. M. Voelker, and
S. Savage. Jigsaw: Solving the puzzle of enterprise 802.11 analysis. In
Proc. SIGCOMM 2006, 2006.

[16] T. Clausen and P. Jaquet. RFC 3626 - Optimized Link State Routing
Protocol (OLSR). http://www.faqs.org/rfcs/rfc3626.
html, October 2003.

[17] CUWiN Foundation. http://www.cuwireless.net/.
[18] R. Draves, J. Padhye, and B. Zill. Routing in multi-radio, multi-hop

wireless mesh network. In Proc. MOBICOM 2004, 2004.
[19] S. Kim, S. Pakzad, D. Culler, G. Fenves, S. Glaser, and M. Turon.

Health monitoring of civil infrastructures using wireless sensor net-
works. In Proc. Fourth International Conference on Information Pro-
cessing in Sensor Networks (IPSN’07), April 2007.

[20] A. Laouiti, P. Muhlethaler, A. Najid, and E. Plakoo. Simulation results
of the olsr routing protocol for wireless network. In 1st Mediterranean
Ad-Hoc Networks workshop (Med-Hoc-Net), 2002.

[21] J. I. Levy, D. H. Bennett, S. J. Melly, and J. D. Spengler. Influence
of traffic patterns on particulate matter and polycyclic aromatic hydro-
carbon concentrations in roxbury, massachusetts. Journal of Exposure
Analysis and Environmental Epidemiology, 13:364–371, 2003.

[22] A. Nandan, S. Tewari, S. Das, M. Gerla, and L. Kleinrock. Adtorrent:
Delivering location cognizant advertisements to car networks. In Proc.
Third IEEE/IFIP Annual Conference on Wireless On-demand Network
Systems and Services (WONS’06), January 2006.

[23] C. Ng, P. Buonadonna, B. N. Chun, A. C. Snoeren, and A. Vahdat.
Addressing strategic behavior in a deployed microeconomic resource
allocator. In Proc. 3rd Workshop on Economics of Peer-to-Peer Sys-
tems, August 2005.

[24] PlanetLab Consortium. Planetlab: An open platform for developing,
deploying, and accessing planetary-scale services. http://www.
planet-lab.org/.

[25] J. Polastre, R. Szewczyk, C. Sharp, and D. Culler. The mote revolution:
Low power wireless sensor network devices. http://webs.cs.
berkeley.edu/papers/hotchips-2004-motes.ppt, Au-
gust 2004.

[26] D. Raychaudhuri et al. Overview of the ORBIT Radio Grid Testbed for
Evaluation of Next-Generation Wireless Network Protocols. In Proc.
IEEE Wireless Communications and Networking Conference (WCNC
2005), 2005.

[27] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An analy-
sis of a large scale habitat monitoring application. In Proc. Second
ACM Conference on Embedded Networked Sensor Systems (SenSys),
November 2004.

[28] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh. Fi-
delity and yield in a volcano monitoring sensor network. In Proc. OSDI
2006, 2006.

[29] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab: A wireless
sensor network testbed. In Proc. Fourth International Conference on
Information Processing in Sensor Networks (IPSN’05), Special Track
on Platform Tools and Design Methods for Network Embedded Sensors
(SPOTS), April 2005.

[30] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar. An integrated experimental en-
vironment for distributed systems and networks. In Proc. of the Fifth
Symposium on Operating Systems Design and Implementation, pages
255–270, Boston, MA, Dec. 2002. USENIX Association.


