Adaptive Overload Control for Busy Internet Servers

Matt Welsh and David Culler
Intel Research, Berkeley
and University of California, Berkeley
{mdw,culler }@cs.berkeley.edu

Abstract variations in demand, which in extreme cases can lead

As Internet services become more popular and pervasive, acrif-0 overload During overload conditions, the service's

ical problem that arises is managing the performance of serfésponse times may grow to unacceptable levels, and ex-

vices under extreme overload. This paper presents a set of tecH—"’u,JSt:?n of resourcers] m%y cause th? service tt)o behave er-
niques for managing overload in complex, dynamic Internetr"’lt'ca y or even crash. The events of September 11, 2001

services. These techniques are based on an adaptive admissiBFPV'ded a.p0|gnant reminder of the 'r_]ab'“ty of m.ost In-
control mechanism that attempts to bound the 9Oth-percentiléernet ,SerV'CeS to scale: many news sites worldwide were
response time of requests flowing through the service. This iémava'lable for several hours due to unprecedenteq de-
accomplished by internally monitoring the performance of themand' CNN.com experienced a reque_st load 20 _tlmes
service, which is decomposed into a set of event-drstages greater than the expecteak at o_ne pomt. exceedlpg
connected with request queues. By controlling the rate atwhicf?o’ooo requests a second. Despite growing the size of

each stage admits requests, the service can perform focusége server farm, CNN was unable to handle the major-

overload management, for example, by filtering only those relty of requesits to the site for aimost 3 hours [23]. Many

guests that lead to resource bottlenecks. We present two exteRerVIces rely on overprovisioning of server resources to

sions of this basic controller that provide class-based servic@anldIe spllkesdlnddemand. However, l\;vhenda S|tef|s serl-
differentiation as well as application-specific service degrada—Ous y overloaded, request rates can be orders of magni-

tion. We evaluate these mechanisms using a complex Webt_ude greater than the average, and it is clearly infeasible

based e-mail service that is subjected to a realistic user load, atg 0_/erprOV|S|_on a service to handle a 100-fold or 1000-
well as a simpler Web server benchmark. fold increase in load.

Overload management is a critical requirement for In-
1 Introduction ternet services, yet few services are designed with over-

Internet services have become a vital resource for manip@d in mind. Often, services rely on the underlying op-
people. Internet-based e-mail, stock trading, driving di-€rating system to manage resources, yet the OS typically
rections, and even movie listings are often considered ind0€s not have enough information about the service's re-
dispensable both for businesses and personal producti$urce requirements to effectively handle overload con-
ity. Web application hosting has opened up new demand€itions. A common approach to overload control is to ap-
for service performance and availability, with businesse!Y fixed (administrator-specified) resource limits, such
relying on remotely-hosted services for accounting, hu-2S bounding the number of simultaneous socket connec-
man resources management, and other applications. juons or threads_. I—_|0wever, it is difficult to gletermlne the
At the same time, Internet services are increasing ifd€al resource limits under widely fluctuating loads; set-
complexity and scale. Although much prior researchting limits too low underutilizes resources, while setting
has addressed the performance and scalability concerfji@®m 100 high can lead to overload regardless. In addi-
of serving static Web pages [8, 28, 31], many modernfion, such resource limits d(_) not have a direct relation-
services rely on dynamically-generated content, whicrShiP to client-perceived service performance.
requires significant amounts of computation and 1/0 to We argue that Internet services should be designed
generate. It is not uncommon for a single Internet serfrom the ground up to detect and respond intelligently to
vice request to involve several databases, applicatiooverload conditions. In this paper, we present an archi-
servers, and front-end Web servers. Unlike static contentecture for Internet service design that makes overload
dynamically-generated pages often cannot be cached ananagement explicit in the programming model, pro-
replicated for better performance, and the resource reviding services with the ability to perform fine-grained
quirements for a given user load are very difficult to pre-control of resources in response to heavy load. In
dict. this model, based on th&taged event-driven architec-
Moreover, Internet services are subject to enormousgure (SEDA) [40], services are constructed as a network

of event-drivenstagesconnected with explicit request exhibit good behavior under heavy load. Traditional
gueues By applying admission control to each queue, server designs rely on processes or threads to capture
the flow of requests through the service can be controlledhe concurrency needs of the server: a common design
in a focused manner. is to devote a thread to each client connection. However,
To achieve scalability and fault-tolerance, Internetgeneral-purpose threads are unable to scale to the large
services are typically replicated across a set of machinesjumbers required by busy Internet services [5, 17, 31].
which may be within a single data center or geograph- The alternative to multithreading is event-driven con-
ically distributed [16, 37]. Even if a service is scaled currency, in which a small number of threads are used to
across many machines, individual nodes still experiencerocess many simultaneous requests. However, event-
huge variations in demand. This requires that effectivedriven server designs can often be very complex, re-
overload control techniques be deployed at the per-nodguiring careful application-specific scheduling of request
level, which is the focus of this paper. processing and I/O. This model also requires that ap-
Our previous work on SEDA [40] addressed the effi- plication code never block, which is often difficult to
ciency and scalability of the architecture, and an earlieachieve in practice. For example, garbage collection,
position paper [39] made the case for overload managepage faults, or calls to legacy code can cause the applica-
ment primitives in service design. This paper builds ontion to block, leading to greatly reduced performance.
this work by presenting an adaptive admission control T counter the complexity of the standard event-
mechanism within the SEDA framework that attempts togriven approach, SEDA decomposes a service into a
meet a 90th percentile response time target by filteringyraph ofstageswhere each stage is an event-driven ser-
requests at each stage of a service. This mechanism \gce component that performs some aspect of request
general enough to support class-based prioritization oprocessing. Each stage contains a small, dynamically-
requests (e.g., allowing certain users to obtain better sekjzedthread poolto drive its execution. Threads act as
vice than others) as well as application-specific servicempilicit continuations, automatically capturing the exe-
degradation. cution state across blocking operations; to avoid overus-
Several prior approaches to overload control in Inter-ing threads, it is important that blocking operations be
net services have been proposed, which we discuss ishort or infrequent. SEDA provides nonblocking 1/0
detail in Section 5. Many of these techniques rely onprimitives to eliminate the most common sources of long
static resource limits [3, 36], apply only to simplistic, plocking operations.
static Web page loads [2, 9], or have been studied only Stages are connected with explicjieuesthat act
under simulation [10, 20]. In contrast, the techniques dexg the execution boundary between stages, as well as a
scribed in this paper allow services to adapt to changingnechanism for controlling the flow of requests through
loads, apply to complex, dynamic Internet services withihe service. This design greatly reduces the complex-
widely varying resource demands, and have been impleyry of managing concurrency, as each stage is responsi-
mented in a realistic application setting. We evaluatey|e only for a subset of request processing, and stages

our overload control mechanisms using both a resourcegre jsolated from each other through composition with
intensive Web-based e-mail service and a simple Welyeyes.

server benchmark. Our results show that these adaptive As shown in Figure 2, a stage consists obaent han-

overload contrpl mechanisms are effective at controllingdler, anincoming event queyand a dynamically-sized
the response times of complex Internet services, and Pefpead pool Threads within a stage operate by pulling a
m|t flexible prioritization and degradation policies to be p,i-hof events off of the incoming event queue and in-
implemented. voking the application-supplied event handler. The event
. . handler processes each batch of events, and dispatches
2 The Staged Event-Driven Architecture zero or more events by enqueueing them on the event
Our overload management techniques are based on thieues of other stages. The stage’s incoming event queue
staged event-driven architectufer SEDA), a model for is guarded by amdmission controllethat accepts or re-
designing Internet services that are inherently scalabl¢ects new requests for the stage. The overload control
and robust to load. In SEDA, applications are struc-mechanisms described in this paper are based on adap-
tured as a graph of event-drivestagesconnected with tive admission control for each stage in a SEDA service.
explicit event queugsas shown in Figure 1. We provide Additionally, each stage is subject to dynammi
a brief overview of the architecture here; a more com-source contrglwhich attempts to keep each stage within
plete description and extensive performance results args ideal operating regime by tuning parameters of the
given in [40]. stage’s operation. For example, one such controller ad-
. justs the number of threads executing within each stage
2.1 SEDA Overview based on an observation of the stage’s offered load (in-
SEDA is intended to support the massive concurrencycoming queue length) and performance (throughput).
demands of large-scale Internet services, as well as tdhis approach frees the application programmer from

admission control
for dynamic pages
] accept
connection
S~ parse — show
o | packet - message
>
read
NS
static pages delete/refile
message
SSL/TLS
1
LR

Figure 1: Structure of the Arashi SEDA-based email service:This is a typical example of a SEDA-based Internet service,
consisting of a network of stages connected with explicit event queues. Each stage is subject to adaptive resource management and
admission control to prevent overload. Requests are read from the network and parsed byalthackeand parse packeitages

on the left. Each request is then passed to a stage that handles the particular request type, such as listing the user’s mail folders.

Static page requests are handled by a separate set of stages that maintain an in-memory cache. For simplicity, some event paths
and stages have been elided from this figure.

send
response

\ﬁ/

(some stages not shown)

N

manually setting “knobs” that can have a serious im-desirable to shed load, for example, by sending explicit
pact on performance. More details on resource controtejection messages to users, rather than cause all users

in SEDA are given in [40]. to experience unacceptable response times. Note that re-
jecting requests is just one form of load shedding; several
2.2 Advantages of SEDA alternatives are discussed below.

While conceptually simple, the SEDA model has anum- Overload protection in SEDA is accomplished
ber of desirable properties for overload management: through the use of fine-grained admission control at each

Exposure of the request stream:Event queues make Stage, which can be used to implement a wide range of
the request stream within the service explicit, allow-Policies. Generally, by applying admission control, the

ing the application (and the underlying runtime environ-service can limit the rate at which a stage accepts new re-
ment) to observe and control the performance of the sysquests, allowing performance bottlenecks to be isolated.

tem, e.g., through reordering or filtering of requests. A simple admission control policy might be to apply a
fixed threshold to each stage’s event queue; however,

with this policy it is very difficult to determine what the
ideal thresholds should be to meet some performance tar-
et. A better approach is for stages to monitor their per-

Focused, application-specific admission control:By

applying fine-grained admission control to each stage
the system can avoid bottlenecks in a focused manne
For example, a stage that consumes many resources ¢

o . i mance and trigger rejection of incoming events when
be conditioned 'to Ioad'by throttling the rate at which some performance threshold has been exceeded. Addi-
events are admitted to just that stage, rather than refu

. %Fonally, an admission controller could assign a cost to

o I) Tbach event in the system, prioritizing low-cost events
can provide its own admission control algorithms that are(e g., inexpensive static Web page requests) over high-
tailored for the particular service. el

cost events (e.g., expensive dynamic pages). SEDA al-
Modularity and performance isolation: Requiring lows the admission control policy to be tailored for each
stages to communicate through explicit event-passing alindividual stage.

lows each stage to be insulated from others in the system Tis mechanism allows overload control to be per-

for purposes of code modularity and performance isolasgrmed within a service in response to measured re-

tion. source bottlenecks; this is in contrast to “external” ser-
L vice control based on ampriori model of service capac-
2.3 Overload exposure and admission con- ity [2, 10]. Moreover, by performing admission control
trol on a per-stage basis, overload response can be focused

The goal of overload management is to prevent servic@n those requests that lead to a bottleneck, and be cus-
performance from degrading in an uncontrolled fash-tomized for each type of request. This is as opposed to
ion under heavy load, as a result of overcommitting re-9€neric overload response mechanisms that fail to con-
sources. As a service approaches saturation, respon§iler the nature of the request being processed [18, 19].
times typically grow very large and throughput may de- When the admission controller rejects a request, the
grade substantially. Under such conditions, it is oftencorresponding enqueue operation fails, indicating to the

Outgoing B fe 3 Overload Control in SEDA
w7

E\?{
Event Queue In this section we present three particular overload con-
:| I trol mechanisms that have been constructed using the
% [T1]

*@*l—“ % stage-based admission control primitives described ear-
AC%’;‘t'f;'fe’? Thread Pool lier. We begin with a motivation for the use of 90th-
percentile response time as a client-based performance
. %%? metric to drive overload control. We then discuss an
Controllers Lo adaptive admission control mechanism to meet a 90th-

percentile response time target, and describe an exten-
sion that enables service differentiation across different
classes of users. We also describe the use of application-
specific service degradation in this framework.

Figure 2: A SEDA Stage: A stage consists of aimcoming
event queusvith an associate@dmission controllera thread
pool, and an application-suppliedvent handler The stage’s
operation is managed by a set obntrollers which dynami-
cally adjust resource allocations and scheduling. Huknis-
sion controllerdetermines whether a given request is admitted3_1 Performance metrics
to the queue.
A variety of performance metrics have been studied in
the context of overload management, including through-
put and response time targets [9, 10], CPU utiliza-

tion [2, 11, 12], and differentiated service metrics, such

originating stage that'there isa bottleneck in the systemas the fraction of users in each class that meet a given
The upstream stage is therefore responsible for reac“”ﬁerformance target [20, 25]. In this paper, we focus

to t_hes_e “overload sign_als” in some way. This _EXpliCit on 90th-percentile response tinas a realistic and in-
|nd|cat|on of overload differs from trad_|t|0nal service de_— tuitive measure of client-perceived system performance.
signs that treat overload as an exceptional case for whickpis metric has the benefit that it is both easy to rea-

applications are given little indication or control. son about and captures the user's experience of Inter-

Reiecti ¢ ¢ q imolv th net service performance. This is as opposed to average
ejecftlon ofaneventirom a queue does notimply thal, ayimum response time (which fail to represent the

the user's requestis rejected from the system. Rather, it 'sshape" of a response time curve), or throughput (which

the responsibility of the stage receivir!g aqueue rejectiorEjepends greatly on the network connection to the service
to perform some a]ternate action, which depends gre"’.‘“)énd bears little relation to user-perceived performance).
on the service logic, as described above. If the service

has been replicated across multiple servers, the request " this context, the system administrator specifies a

can be redirected to another node, either internally or byy@9et value for the service’s 90th-percentile response

sending an HTTP redirect message to the client. ServicedM€: The target response time may be parameterized

may also provide differentiated service by delaying cer-PY relative utility of the requests, for example, based on
tain requests in favor of others: an e-commerce site migh€duest type or user classification. An example might be
give priority to requests from users about to complete!© SPEcify a lower response time target for requests from
an order. Another overload response is to block untjlUSers with more items in their shopping cart. Our cur-
the downstream stage can accept the request. This leaf@t implementation, discussed below, allows separate
to backpressure, since blocked threads in a stage caukgSPOnse time targets to be specified for each stage in the
its incoming queue to fill, triggering overload reSIOOnseserwce, as well as for different classes of users (based on

upstream. In some applications, however, backpressure ddress, request header information, or HTTP cook-

may be undesirable as it causes requests to queue ufS)-

possibly for long periods of time.

L . 3.2 Response time controller design
More generally, an application malegrade service

in response to overload, allowing a larger number ofThe design of the per-stage overload controller in SEDA
requests to be processed at lower quality. Exampless shown in Figure 3. The controller consists of sev-
include delivering lower-fidelity content (e.g., reduced- eral components. Anonitor measures response times
resolution image files) or performing alternate actionsfor each request passing through a stage. Requests are
that consume fewer resources per request. Whetha@agged with the current time when they enter the service.
or not such degradation is feasible depends greatly oit each stagesS, the request’'s response time is calcu-
the nature of the service. The SEDA framework it- lated as the time it leaves minus the time it entered the
self is agnostic as to the precise degradation mechasystem. While this approach does not measure network
nism employed—it simply provides the admission con-effects, we expect that under overload the greatest con-
trol primitive to signal overload to applications. tributor to perceived request latency will be intra-service

Token
Bucket Rate

i

Thread Pool

Controller

Response
Time Monitor

In order to prevent sudden spikes in the response time
sample from causing large reactions in the controller, the
90th-percentile response time estimate is smoothed using
an exponentially weighted moving average with parame-
tera:

cur=a-cur+ (1 —«)-samp

4 iDiS”ib““"” The controller then calculates the error between the cur-
TaF:gT]et rent response time measurement and the target:
Figure 3: Response time controller design:The controller _ cur — target
observes a history of response times through the stage, and ad- target

justs the rate at which the stage accepts new requests to meet gp gy > err,, the token bucket rate is reduced by a
administrator-specified 90th-percentile response time target. multiplicative factoradj,. If err < err;, the rate is in-

creased by an additive factor proportional to the error:

Parameter | Description Defaultvalue | _(¢rr — ¢;)adj;. The constant; is used to weight the
nreq # regs before controller rur) 100 rate increase such that wherr = ¢; the rate adjustment
timeout Time before controller run | 1 sec is 0

« EWMA filter constant 0.7 ’ . . .

err; % error to trigger increase | 0.5 The parameters used in the implementation are sum-
err, % error to trigger decrease 0.0 marized in Figure 4. These parameters were determined
adj; Additive rate increase 2.0 experimentally using a combination of microbenchmarks
adj, Multiplicative rate decreas¢ 1.2 with artificial loads and real applications with realistic
ci Weight on additive increase -0.1 loads (e.g., the e-mail service described in the next sec-
ratémin Minimum rate 0.05 tion). In most cases the controller algorithm and param-
ratemax Maximum rafe 2000.0 eters were tuned by running test loads against a service

Figure 4:Parameters used in the response time controller. gnd observing the behavior of the controller in terms of

measured response times and the corresponding admis-
] sion rate.

response time. These parameters have been observed to work well

The measured 90th-percentile response time Ovejcross a range of applications, however, there are no
some interval is passed to theontroller that ad- guarantees that they are optimal. In particular, the be-
justs theadmission control parameterbased on the havior of the controller is sensitive to the setting of the
administrator-supplied response-titagget In the cur- smoothing filter constant, as well as the rate increase
rent design, the controller adjusts the rate at which nevadj, and decreasadj,; the setting of the other parame-
requests are admitted into the stage’s queue by adjusters is less critical. The main goal of tuning is allow the
ing the rate at which new tokens are generated in a tokeBontroller to react quickly to increases in response time,
bucket traffic shaper [33]. A wide range of alternate ad-while not being so conservative that an excessive num-
mission control policies are possible, including drop-tail per of requests are rejected. An important problem for
FIFO or variants of random early detection (RED) [14]. fyture investigation is the tuning (perhaps automated) of

The basic overload control algorithm makes use ofcontroller parameters in this environment. It would be
additive-increase/multiplicative-decrease tuning of theuseful to apply concepts from control theory to aid in the
token bucket rate based on the current observation of thining process, but this requires the development of com-
90th-percentile response time. The controller is invokedplex models of system behavior. We discuss the role of
by the stage’s event-processing thread after some nuntontrol theoretic techniques in more detail in Section 5.3.
ber of requestanfeq) has been processed. The controller
also runs after a set intervdirfeou) to allow the rate to
be adjusted when the processing rate is low.

The controller records up tareqresponse-time sam-
ples and calculates the 90th-percentile sanspl@pby
sorting the samples and taking @9 x nreg)-th sample.

3.3 Class-based differentiation

By prioritizing requests from certain users over others,
a SEDA application can implement various policies re-
lated to class-based service level agreements (SLAS). A
common example is to prioritize requests from “gold”

1 , . - _customers, who might pay more money for the privilege,
To avoid TCP’s exponential backoff for initial SYN retransmis- . . L . .
. : ; . . or to give better service to customers with items in their
sion, our implementation of SEDA rapidly accepts new client connec-

tions. In cases where the number of incoming connections is extremel?hon_Ing cart. . L
large, or initial SYNs are dropped by the network, our approach can be ~ Various approaches to class-based differentiation are

supplemented with some form of network latency estimation [30, 35]P0ssible in SEDA. One option would be to segregate re-
to obtain a more accurate response-time estimate. quest processing for each class into its own set of stages,

each class.

Token
R :
Buckets @ eTsiﬁfelse For class, if err® > err§, then the token bucket rate
:Mllllﬂ of all classesower thanc is reduced by a multiplicative
$8358 factor adjlo, (with default value 10). If the rate of all

lower classes is already equal ri@teni, then a counter
Ic¢ is incremented; whele® > Icesh (default value 20),
Controller = then the rate for classis reduced byadj, as described

? T EDistributions above. In this way the controller aggressively reduces
N s 2 the rate of lower-priority classes before that of higher-
et Ctaﬁsgset priority classes. Admission rates are increased as in Sec-

Fi 5 Multicl load controller desian: Fo h tion 3.2, except that whenever a higher-priority class ex-
Igure o: Multiclass overload controller design: For each — -oqyg jts response time target, all lower-priority classes

request class, the controller measures the 90th-percentile reare flagged to prevent their admission rates from being

sponse time, and adjusts the rate at which the stage accep'i}creased during the next iteration of the controller.
new requests of each class. When overload is detected, the ad-

mission rate for lower-priority classes is reduced before that of . .
higher-priority classes. 3.4 Service degradation

Another approach to overload management is to allow

applications to degrade the quality of delivered service

File Edit Visw Go Communicator Help |

453 do@ 320 ¥ = in order to admit a larger number of requests [1, 7, 16].

‘ «.§ " Bookmarks & Location: [http: //chillata:8000/1: 1846ef42afcdzd 7 /H

- A SEDA itself does not implement service degradation

sommeasetesses]T }‘i”! mechanisms, but rather signals overload to applications
= ~ in a way that allows them to degrade if possible. Stages
ety b [can obtain the current 90th-percentile response time

measurement as well as enable or disable the stage’s ad-
mission control mechanism. This allows an service to

Showing 10 from folder java [[Next: 10-19) Back to folder list

From To Subject Date [&]

CTIOT iy Bflowo¥ie % implement degradation by periodically sampling the cur-
e wanenn. sBetd=Dy [Iamestimse Lo rent response time and comparing it to the target. If ser-
B s vice degradation is ineffective (say, because the load is

Mart Welsh

boelafi el iy e 555 too high to support even the lowest quality setting), the
iy R e e - — L A stage can re-enable admission control to cause requests
[[00% [|5 %0 &P B3 2

to be rejected.
Figure 6: Screenshot of the Arashi e-mail serviceArashi

allows users to read e-mail through a Web browser interface. .

Many traditional e-mail reader features are implemented, in- 4 Evaluation

cluding message search, folder view, sorting message lists byn this section, we evaluate the SEDA overload control

author, subject, or date fields, and so forth. mechanisms using two applications: a complex Web-
based e-mail service, and a Web server benchmark in-

_ L _ . volving dynamic page generation that is capable of de-
in effect partitioning the service’s stage graph into SePayrading service in response to overload.
rate flows for each class. In this way, stages for higher-

priority classes could be given higher priority, €.g., by 4 1 Arashi: A SEDA-based e-mail service
increasing scheduling priorities or allocating additional
threads. Another option is to process all classes of reWe wish to study the behavior of the SEDA overload
guests in the same set of stages, but make the admissieontrollers in a highly dynamic environment, under a
control mechanism aware of each class, for example, byvide variation of user load and resource demands. We
rejecting a larger fraction of lower-class requests tharhave developed thArash? Web-based e-mail service,
higher-class requests. This is the approach taken here. which is akin to Hotmail and Yahoo! Mail, allowing
The multiclass response time control algorithm isusers to access e-mail through a Web browser interface
identical to that presented in Section 3.2, with severaWith various functions: managing e-mail folders, delet-
small modifications. Incoming requests are assignedng and refiling messages, searching for messages, and
an integerclassthat is derived from application-specific so forth. A screenshot of the Arashi service is shown in
properties of the request, such as IP address or HTTPigure 6.
cookie information. A separate instance of the response Arashi is implemented using tf&andstornplatform,
time controller is used for each clagswith independent a SEDA-based Internet services framework implemented
response time targetarget’. Likewise, the queue ad-
mission controller maintains a separate token bucket for 2Arashiis the Japanese word fetorm

IS

220 50

1
f thh percentile RT . —E‘— QOtH Ytile ‘RT, wifh overlbad cdmrol '

T
‘L Admission rate
[l

/\ 4 200 45 | =-©--- 90th %tile RT, no overload control 109
35 ~-@- Reject rate @
_/\ H {180 0 ¥ 038
3 " 1) .| .':
\‘ H- I 160 35 g 07
| | | " 4 140
25 ; “ ” 30 Y 06
Al {120 FE
| |

0.5

Reject rate

1
B
fo‘l.‘

\ L
L ANV 140

‘ﬁ" T E-f Y 20 5
| W . M * 0 0 : : . . : 0
60 80 100 120 140 160 2 4 8 16 32 64 128 256 512 1024

Time (5 sec intervals) Number of clients
Figure 7:Overload controller operation: This figure shows Figure 8: Overload control in Arashi: This figure shows
the operation of the SEDA overload controller for one of the the 90th-percentile response time for the Arashi e-mail ser-
stages in the Arashi e-mail service during a large load spike. Avice with and without the overload controller enabled. The
load spike of 1000 users enters the system at around’0 and 90th-percentile response time target is 10 sec. Also shown is
leaves the system around= 150. The response time target is the fraction of rejected requests with overload control enabled.
set to 1 sec. The overload controller responds to a spike inNote that the overload controller is operating independently on
response time by exponentially decreasing the admission rateach request type, though this figure shows the 90th-percentile
of the stage. Likewise, when the measured response time iesponse time and reject rate averaged across all requests. As
below the target, the admission rate is increased slowly. Noticehe figure shows, the overload control mechanism is effective at
the slightincrease in the admission rate around 100; this is meeting the response time target despite a many-fold increase
an example of the proportional increase of the admission ratein load.
based on the error between the response time measurement and

the target. The spikes in the measured response time are caused f1h kel . .
by bursts of requests entering the stage, as well as resourc _om, traces of the leJChBe.r eley Compu:]e.rkS(?Ienqe Divi-
contention across stages. sion’s IMAP servef. The inter-request think time is ag-

gressively setto 20ms. When the service rejects a request

from a user, the user waits for 5 sec before attempting to
in Java [40F As shown in Figure 1, some number l0g into the service again. The Arashi service runs on a
of stages are devoted to generic Web page processing;2 GHz Pentium 4 machine running Linux 2.4.18, and
nonblocking network and file I/O, and maintaining a the client load generators run on between 1 and 16 simi-
cache of recently-accessed static pages; in the Arashir machines connected to the server with Gigabit Ether-
service, there is only a single static Web object (thenet. Since we are only interested in the overload behavior
Arashi logo image). Arashi employs six stages to pro-Of the server, WAN network effects are not incorporated
cess dynamic page requests, with one stage assignd@fo our evaluation.
to each request type (show message, list folders, etc.) .
Each stage is implemented as a Java class that prtfl--2 Controller operation
cesses the corresponding request type, accesses e-miidjure 7 demonstrates the operation of the overload con-
data from a MySQL [27] database, and generates a cusroller, showing the 90th-percentile response time mea-
tomized HTML page in response. This design allowssurement and token bucket admission rate for one of the
the admission control parameters for each request typstages in the Arashi service (in this case, for the “list fold-
to be tuned independently, which is desirable given theers” request type). Here, the stage is being subjected to
large variation in resource requirements across requesta.very heavy load spike of 1000 users, causing response
For example, displaying a single message is a relativelyimes to increase dramatically.
lightweight operation, while listing the contents of anen- As the figure shows, the controller responds to a spike
tire folder requires a significant number of database acin the response time by exponentially decreasing the to-
cesses. ken bucket rate. When the response time is below the

The client load generator used in our experiments emtarget, the rate is increased slowly. Despite several over-

ulates a number of simultaneous users, each accessigfoots of the response time target, the controller is very
a single mail folder consisting of between 1 and 12794effective at keeping the response time near the target.
messages, the contents of which are based on actual €he response time spikes are explained by two factors.
mail archives. Emulated users access the service basérst, the request load is extremely bursty due to the real-
on a simple Markovian model of user behavior derivedistic nature of the client load generator. Second, because

0.4

| 9 80
4 60

iy
@
—

Target N] 03
L
|

Admission rate (reqs/sec)

-

Target

0.2

90th percentile response time (sec)
N

90th percentile response time, sec
N
(%]

e
14

10.1

o

30ur earlier work [40] demonstrated that despite using Java, Sand- “We are indebted to Steve Czerwinski for providing the IMAP trace
storm performance is competitive with systems implemented in C. data.

16 users 1024 users : : ‘ ‘
Type No OLC | OLC No OLC | OLC o Foed connecton imit
login 0.83sec | 0.59sec| 0.86 sec | 3.84 sec L RRemeentel]
list folders | 1.73 sec | 0.57 sec| 365sec | 5.75 sec

listmsgs | 2.37sec | 0.58 sec| 116 sec | 9.28 sec
showmsg | 0.70 sec | 0.30 sec| 30.1sec | 3.87 sec
delete 1.00sec | 0.28 sec| 11.3sec | 6.85sec
refile 1.00sec | 0.47 sec| 10.6 sec | 6.07 sec
search 8.17 sec | 9.92sec| 19.6sec | 18.1 sec

i
IN)
=]

o
s}

©
o

@
=}

Load spike

(1000 users) Lload spike ends

N
o

N
o

90th percentile response time (sec)

0 S 1
Figure 9: Breakdown of response times by request type: 053
This table lists the 90th-percentile response time for each re- i : ' §
quest type in the Arashi e-mail service for loads of 16 and 0 2 0 e o o0 &
1024 users, both without overload control (“No OLC") and Time (5 sec intervals)

with overload control (“With OLC”). The response time target Figure 10: Overload control under a massive load spike:

is 10 sec, and values in boldface exceeded the target. Althouglihis figure shows the 90th-percentile response time experi-

request types exhibit a widely varying degree of complexity, theenced by clients using the Arashi e-mail service under a mas-

controller is effective at meeting the response time target forsive load spike (from 3 users to 1000 users). Without over-

each type. With 1024 users, the performance target is exceedadad control, response times grow without bound; with over-

for searchrequests due to their relative infrequency. load control (using a 90th-percentile response time target of
1 second), there is a small increase during load but response

times quickly stabilize. The lower portion of the figure shows
all stages share the same back-end database, requests{q! fraction of requests rejected by the overload controller.

other stages (not shown in the figure) may cause resource
contention that affects the response time of the “list fold-
ers” stage. Note, however, that the largest response timé.4 Overload control under a massive load
spike is only about 4 seconds, which is not too serious spike
given a response time target of 1 second. With no admis- . .
sion control, response times grow without bound, as WeThe previous section eyaluated the overload <_:0ntro||er
will show in Sections 4.3 and 4.4. !Jnder asfceadlly increasing user Iqad, representing e_lslow
increase in user population over time. We are also inter-
4.3 Overload control with increased user ested in evaluating the effective_ness of th_e overlogd con-
load troller gnder a sudden load spike. In t_h|s scenario, we
start with a base load of 3 users accessing the Arashi ser-
Figure 8 shows the 90th-percentile response time of theice, and suddenly increase the load to 1000 users. This
Arashi service, as a function of the user load, both withis meant to model a “flash crowd” in which a large num-
and without the per-stage overload controller enabledber of users access the service all at once.
Also shown is the fraction of overall requests that are Figure 10 shows the performance of the overload con-
rejected by the overload controller. The 90th-percentiletroller in this situation. Without overload control, there
response time target is set to 10 sec. For each data poiris an enormous increase in response times during the
the corresponding number of simulated clients load thdoad spike, making the service effectively unusable for
system for about 15 minutes, and response-time distriall users. With overload control and a 90th-percentile re-
butions are collected after an initial warm-up period of sponse time target of 1 second, about 70-80% of requests
about 20 seconds. As the figure shows, the overload corare rejected during the spike, but response times for ad-
trol mechanism is effective at meeting the response timenitted requests are kept very low.
target despite a many-fold load increase. Our feedback-driven approach to overload control is
Recall that the overload controller is operating onin contrast to the common technique of limiting the num-
each request type separately, though this figure shows thzer of client TCP connections to the service, which does
90th-percentile response time and reject rate acatiss not actively monitor response times (a small number of
requests. Figure 9 breaks the response times down actients could cause a large response time spike), nor give
cording to request type, showing that the overload conusers any indication of overload. In fact, refusing TCP
troller is able to meet the performance target for eactconnections has a negative impact on user-perceived re-
request type individually. With 1024 users, the perfor-sponse time, as the client's TCP stack transparently re-
mance target is exceeded fsearchrequests. This is tries connection requests with exponential backoff. Fig-
mainly due to their relative infrequency: search requestaire 10 shows the client response times when overload
are very uncommon, comprising less than 1% of the recontrol is disabled and a limit of 128 simultaneous con-
quest load. The controller for theearchstage is there- nections is imposed on the server. As the figure shows,
fore unable to react as quickly to arrivals of this requestthis approach leads to large response times overall. Dur-
type. ing this benchmark run, over 561 of the 1000 clients ex-

Per-stage AC Single-stage AC

©
o

Type 90th RT | Rejected | 90th RT | Rejected o _j" T Wit degradaton
login 2.07sec | 44.3% 1.00sec| 18.8% 8o e Sevice qually

list folders | 8.11sec| 59.6% | 3.97 sec | 59.6% 2 -

listmsgs | 8.04sec| 47.1% | 6.20 sec | 53.7% 3 2 I |

show msg | 3.90 sec| 23.1% 2.04sec | 49.1% § oo |odgpke J | Lpad spike ends

delete 4.86 sec | 11.3% 3.26sec | 51.4% €10

refile 4.60sec | 10.4% 2.12sec| 54.7% ER .
search 22.2sec| 0% 18.9sec | 53.3% §

Figure 11:Comparison of per-stage versus single-stage ad-
mission control: This table shows the 90th-percentile response
time and reject rate by request type for a load of 128 users on 0 20
the Arashi service. The response time target is 10 sec, and times Time (5 sec intervals)
shown in boldface exceeded the performance target. With per-igure 12:Effect of service degradation: This figure shows
stage admission control, the rejection rate is tuned based orthe 90th-percentile response time experienced by clients ac-
the overhead of each request type. For single-stage admissiocessing a simple service consisting of a single bottleneck stage.
control, all requests experience approproximately the same reThe stage is capable of degrading the quality of service deliv-
jection rate. ered to clients in order to meet response time demands. The
90th-percentile response time target is set to 5 seconds. With-
out service degradation, response times grow very large under
perienced connection timeout errors. a load spike of 1000 users. With service degradation, response
We claim that giving 20% of the users good servicetimes are greatly reduced, oscillating near the target perfor-
and 80% of the users some indication that the site isnance level.
overloaded is better than givirgl users unacceptable
service. However, this comes down to a question of what
policy a service wants to adopt for managing heavy loadtinuous “quality knob” that can be tuned to trade per-
Recall that the service need not reject requests outright—formance for service fidelity. A single stage acts as a
it could redirect them to another server, degrade serviceCPU-bound bottleneck in this service; for each request,
or perform an alternate action. The SEDA design allowsthe stage reads a varying amount of data from a file, com-
a wide range of policies to be implemented: in the nextputes checksums on the file data, and produces a dynam-
section we look at degrading service as an alternate reically generated HTML page in response. The stage has
sponse to overload. an associated quality factor that controls the amount of
Applying admission control to each stage in thedata read from the file and the number of checksums
Arashi service allows the admission rate to be separatelgomputed. By reducing the quality factor, the stage con-
tuned for each type of request. An alternative policysumes fewer CPU resources, but provides “lower qual-
would be to use a single admission controller that fil-ity” service to clients.

ters all incoming requests, regardless of type. Under ysing the overload control interfaces in SEDA, the
such a policy, a small number of expensive requests cagrage monitors its own 90th-percentile response time
cause the admission controller to reject many unrelatednq reduces the quality factor when it is over the
requests from the system. Figure 11 compares these Weqyministrator-specified limit. Likewise, the quality fac-
policies, showing the admission rate and 90th-percentilgyy is increased slowly when the response time is below
response time by request type for a load of 128 users. Age |imit. Service degradation may be performed either
the figure shows, using a single admission controller ispgependently or in conjunction with the response-time
much more aggressive in terms of the overall rejectioadmission controller described above. If degradation is
rate, leading to lower response times overall. Howeverysed alone, then under overload all clients are given ser-
the policy does not discriminate between infrequent, €Xvjce put at a reduced quality level. In extreme cases,
pensive requests and more common, less expensive Igpyever, the lowest quality setting may still lead to very

o
(52}
Quality / Reject rate

Co

60 80

=
o

quests. large response times. The stage optionally re-enables the
. .) admission controller when the quality factor is at its low-
4.5 Service degradation experiments est setting and response times continue to exceed the tar-

As discussed previously, SEDA applications can respon@et.

to overload by degrading the fidelity of the service of- Figure 12 shows the effect of service degradation un-

fered to clients. This technique can be combined with adder an extreme load spike, and Figure 13 shows the use of

mission control, for example, by rejecting requests onlyservice degradation coupled with admission control. As

when the lowest service quality still leads to overload. these figures show, service degradation alone does a fair
We evaluate the use of service degradation through @b of managing overload, though re-enabling the admis-

simple Web server benchmark that incorporates a consion controller under heavy load is much more effective.

50

80 . . . 9 . — —
) L R I —
70] o Rt cntol 2% Rejoct e flow prioib) —— 8
g 60 e -+ Service quality £ % - E
& 5 B e Reject rate 8 70 LA O TN . g
2 0 s “ § o P el TP AR T e R 3
] I @ 3
g 0 Load spike jz i Load spike ends g I h | ll A ,A MA I 3.8 ;%
g 20 : = [AU S | R
£ 1o 4 | R N LA U LU | N YRR
2 \f I, o g ALY Al VAV N 04 8
E 0 Soostes o <) I | 02 &
g 19 sy A1 g 3 . . I
g i i & 50 100 150 200 250
§ { ‘. - 0.5% Time (5 sec intervals)
: "-‘}'Tt'%fi-"‘?*;"m g g ig t ‘ Response time (high priority) -+] 9
: PRI 0 & g 39 Reject rate (high priority) ------- ?
0 20 40 60 80 100 £ % , 1]
: i I @ & 2 s 2L @
. . Time (5 Se"-'me”’as) . . o é lg s ’."4,&‘.;‘-;,4 (R g
Figure 13: Service degradation combined with admission g 108
control: This figure shows the effect of service degradation 2 s
combined with admission control. The experiment is identical g 0.4 §
to that in Figure 12, except that the bottleneck stage re-enables § 02 i

‘ ‘ ‘ o

admission control when the service quality is at its lowest level. 50 100 150 200 250
. . . Time (5 sec intervals)

In contrast to the use of service degradation alone, degradation

coupled with admission control is much more effective at meetfFigure 14:Multiclass experiment without service differen-
ing the response time target. tiation: This figure shows the operation of the overload con-

trol mechanism in Arashi with two classes of 128 users each

accessing the service. The high-priority users begin accessing
Note that when admission control is used, a very largghe service at tim¢ = 100 and leave at = 200. No service
fraction (99%) of the requests are rejected; this is due talifferentiation is used, so all users are treated as belonging to
the extreme nature of the load spike and the inability ofthe same class. The 90th-percentile response time target is set
the bottleneck stage to meet the performance target, eveén 10 sec. The controller is able to maintain response times

at a degraded level of service. near the target, though no preferential treatment is given to
higher-priority users as they exhibit an identical frequency of
4.6 Service differentiation rejected requests.

Finally, we evaluate the use of multiclass service differ-

entiation, in which requests from lower-priority users aréage reject rate is 87.9% for the low-priority requests, and
rejected before those from higher-priority users. In thesg;g gos, for the high-priority requests. This is compared
experiments, we deal with two user classes, each with, 55 504 and 57.6%, respectively, when no service dif-
a 90th-percentile response time target of 10 sec, genefarentiation is performed. Note that the initial load spike
atmg load agglnst 'the Arashi e-mail service. Each &X{aroundt = 100) when the high priority users become

periment begins with a base load of 128 users from the,ctive is somewhat more severe with service differenti-
lower-priority class. At a certain point during the run, ation enabled. This is because the controller is initially
128 users from the higher-priority class also start acCessjttempting to reject only low-priority requests, due to the

ing the service, and leave after some time. The user clas'ag threshold Ieresr) for triggering admission rate re-
is determined by a field in the HTTP request header; they \ction for high-priority requests.

implementation is general enough to support class as-
S|gnm_ent basgd on client IP address, HTTP cookies, %5 Related Work
other information.

Figure 14 shows the performance of the multiclassln this section we survey prior work in Internet service
overload controller without service differentiation en- overload control, discussing previous approaches as they
abled: all users are effectively treated as belonging to th&elate to four broad categories: resource containment, ad-
same class. As the figure shows, the controller is able t&ission control, control-theoretic approaches, and ser-
maintain response times near the target, though no preftice degradation. In [38] we present a more thorough
erential treatment is given to the high priority requests. overview of related work.

In Figure 15, service differentiation is enabled, caus- .
ing requests from lower-priority users to be rejected5'1 Resource containment
more frequently than higher-priority users. As the fig- The classic approach to resource management in Inter-
ure demonstrates, while both user classes are active, threet services is static resource containment, in wigich
overall rejection rate for higher-priority users is slightly priori resource limits are imposed on an application or
lower than that in Figure 14, though the lower-priority service to avoid overcommitment. We categorize all of
class is penalized with a higher rejection rate. The averthese approaches siticin the sense that some external

50
L ' Respoﬁse time (low pr‘iomy) —
40 h h
N Reject rate (low priority) ——
30 i
20

10 b ™ e e

| C MM TN oe
O 1T A Y AL A Y IO e

(L A A

Zeus [41] and thttpd [3] provide mechanisms to throt-
tle the bandwidth consumption for certain Web pages to
prevent overload, based on a static bandwidth limit im-
posed by the system administrator for certain classes of
requests. A very similar mechanism has been described
by Li and Jamin [24]. In this model, the server inten-
tionally delays outgoing replies to maintain a bandwidth

Fraction of rejected requests

90th percentile response time, sec

50 100 150 200 250 limit, which has the side-effect of tying up server re-
Time (5 sec intervals) sources for greater periods of time to deliver throttled
4518 L ' Responée time (high pr‘iorily) ————————] replies_

Reject rate (high priority) =--------

.
20 dh 4 1

Ny » 4. te.
B RS R el

5.2 Admission control

The use of admission control as an overload management
technique has been explored by several systems. Many
of the proposed techniques are based on fixed policies,
such as bounding the maximum request rate of requests
to some constant value. Another common aspect of these
Figure 15: Multiclass service differentiation: This figure appr.oaChes IS th_at they often reject Incoming work to a
:) service by refusing to accept new client TCP connec-
shows the operation of the multiclass overload control mech- .
o - . _tions.
anism in Arashi with two classes of 128 users each. Service | t al. 1181 d ib imole admissi trol
differentiation between the two classes is enabled and the 90th- yer et al. [18] describe a simple admission contro

percentile response time target for each class is 10 sec. Thénechanlsm based on bounding the length of the Web

high-priority users begin accessing the service at time 100 Zﬁrve:, rre?#eSt queue'b -I;hls W?rk zng!yzestf;]rIOUﬁ Tgt-
and leave at = 200. As the figure shows, when the high- gs for In€ queue abatement and discar resholas,

priority users become active, there is an initial load spike that though does not specify how these thresholds should be

; s o set to meet any given performance target. Cherkasova
is compensated for by penalizing the admission rate of the low= . S

o o . and Phaal [11] presesession-baseddmission control,
priority users. Overall the low-priority users receive a large

number of rejections, while high-priority users are able to re- driven b_y a CPU L.Jt'.lnzatlon threshold, Whmh pgrforms
ceive a greater fraction of service. an admission deusmn w_hgn a new session arrives _from
a user, rather than for individual requests or connections.
Such a policy would be straightforward to implement in
SEDA.
entity (say, the system administrator) imposes a limit on \pjgt et al[36] present several kernel-level mecha-
the resource usage of a process or application. Althoughisms for overload management: restricting incoming
resource limits may change over time, they are typicallyconnections based on dropping SYN packets; parsing
not driven by monitoring and feedback of system perfor-ang classification of HTTP requests in the kernel; and
mance; rather, the limits are arbitrary and rigid. ordering the socket listen queue by request URL and
In a traditional thread-per-connection Web server de<lient IP address. Another traffic-shaping approach is
sign, the only overload mechanism generally used is talescribed in [19], which drives the selection of incom-
bound the number of processes (and hence the number ofg packet rates based on an observation of system load,
simultaneous connections) that the server will allocatesuch as CPU utilization and memory usage. Web2K [6]
When all server threads are busy, the server stops accegirings several of these ideas together in a Web server
ing new connections; this is the type of overload protec-front-end” that performs admission control based on the
tion used by Apache [4]. There are two serious problemdength of the request queue; as in [18], the issue of de-
with this approach. First, it is based on a static thread otermining appropriate queue thresholds is not addressed.
connection limit, which does not directly correspond to Lazy Receiver Processing [13] prevents the TCP/IP re-
user-perceived performance. Service response time deeive path from overloading the system; this technique
pends on many factors such as user load, the length afould be coupled with SEDA's overload controllers in ex-
time a given connection is active, and the type of requestreme cases where incoming request rates are very high.
(e.g., static versus dynamic pages). Secondly, not adQie et al[34] introduce resource limitations within the
cepting new TCP connections gives the user no indicaFlash [31] Web serber, primarily as a protection against
tion that the site is overloaded: the Web browser simplydenial-of-service attacks, though the idea could be ex-
reports that it is still waiting for a connection to the site. tended to overload control.
As described earlier, this wait time can grow to be very Several other admission control mechanisms have
long, due to TCP’s exponential backoff on SYN retrans-been presented, though often only in simulation or for
missions. simplistic workloads (e.g., static Web pages). PAC-

1

0.8
0.6
0.4
0.2

Fraction of rejected requests

90th percentile response time, sec

. . . 0
50 100 150 200 250
Time (5 sec intervals)

ERS [10] attempts to limit the number of admitted re- treme overload, we expect that a system model based on
guests based on expected server capacity, but this péw-load conditions may break down.

per deals with a simplistic simulated service where re- Many system designers resortad hoccontroller de-
guest processing time is linear in the size of the requestesigns in the face of increasing system complexity. Al-
Web page. A related paper allocates requests to Apachthough such an approach does not lend itself to for-
server processes to minimize per-class response timmal analysis, careful design and tuning may yield a ro-
bounds [9]. This paper is unclear on implementation de-bust system regardless. Indeed, the congestion-control
tails, and the proposed technique silently drops requestsiechanisms used in TCP were empirically determined,
if delay bounds are exceeded, rather than explicitly notithough recent work has attempted to apply control-
fying clients of overload. Kanodia and Knightly [20] de- theoretic concepts to this problem as well [21, 22].

velop an admission control mechanism basedemice . .

envelopesa modelling technique used to characterize thed-4 ~ Service degradation

traffic of multiple flows over a shared link. The admis- A number of systems have exp|ored the use of service
sion controller attempts to meet response-time boundgegradation to manage heavy load. The most straightfor-
for multiple classes of service requests, but again is onlyyard type of degradation is to reduce the quality of static
;tudied under a simple simulation of Web server behaviveb content, such as by reducing the resolution or com-

Ior. pression quality of images delivered to clients [1, 7, 16].
. In many cases the goal of image quality degradation is
5.3 Control-theoretic approaches to reduce network bandwidth consumption on the server,

Control theory [29] provides a formal framework for though this may have other effects as well, such as mem-
reasoning about the behavior of dynamic systems an@'y Savings.
feedback-driven control. A number of control-theoretic A more sophisticated example of service degrada-
approaches to performance management of real systeni§n involves replacing entire Web pages (with many
have been described [26, 32], and several of these havélined images and links to other expensive objects)
focused on overload control for Internet services. with stripped-down Web pages that entail fewer individ-
Abdelzaher and Lu [2] describe an admission con-val HTTP requests to deliver. This was the_ approach
trol scheme that attempts to maintain a CPU utilizationtaken by CNN.com on September 11, 2001; in response
target using a proportional-integral (PI) controller andt© overload, CNN replaced its front page with simple
a simplistic linear model of server performance. ApartHTML page that that could be transmitted in a single
from ignoring caching, resource contention, and a hosEthernet packet [23]. This technique was implemented
of other effects, this model is limited to static Web pageMmanually, though a better approach would be to degrade
accesses. An alternative approach, described in [25], agervice gracefully and automatically in response to load.
locates server processes to each class of pending con- /N SOme cases it is possible for a service to make per-
nections to obtain eelative delaybetween user classes. formance tradeoffs in terms of the freshness, consistency,
Diao et al. [12] describe a control-based mechanism forO" completeness of data delivered to clients. Brewer and
tuning Apache server parameters (the number of servedf0x [15] describe this tradeoff in terms of tharvestand
processes and the per-connection idle timeout) to megfi€ld of a data operation; harvest refers to the amount
given CPU and memory utilization targets. Recall that inf data represented in a response, while yield (closely
Apache, reducing the number of server processes lead€lated to availability) refers to the probability of com-

to increased likelihood of stalling incoming connections; Pleting a request. For example, a Web search engine
although this technique effectively protects server re-could reduce the amount of the Web database searched

sources from oversaturation, it results in poor client-when overloaded, and still produce results that are good
perceived performance. enough such that a user may not notice any difference.
Although control theory provides a useful set of tools ©One disadvantage to service degradation is that many
for designing and reasoning about systems subject t§€rvices lack a “fidelity knob” by design. For example,
feedback, there are many challenges that must be ad@" e-.ma|l or chat service cannot prac'ucajly degrade ser-
dressed in order for these techniques to be applicable t4iC€ in response to overload: “lower-quality” e-mail and
real-world systems. One of the greatest difficulties is thathat have no meaning. In these cases, a service must re-

good models of system behavior are often difficult to de-SOrt to admission control, delaying responses, or one of
rive. Unlike physical systems, which can often be de-the other mechanisms described earlier. Indeed, rejecting

scribed by linear models or approximations, Internet ser@ réquest through admission control is the lowest quality
vices are subject to poorly understood traffic and internaf€tting for a degraded service.

resource demands. The systems described here all ma%e .

use of linear models, which may not be accurate in de- Future Work and Conclusions
scribing systems with widely varying loads and resourcéWe have argued that measurement and control are the
requirements. Moreover, when a system is subject to exkeys to resource management and overload protection

in busy Internet services. This is in contrast to long-vice degradation. The evaluation of these control mech-
standing approaches based on resource containmeranisms, using both the complex Arashi e-mail service
which typically mandate aa priori assignment of re- and a simpler dynamic Web server benchmark, show that
sources to each request, limiting the range of applicabl¢hey are effective for managing load with increasing user
load-conditioning policies. Still, introducing feedback populations as well as under massive load spikes.

as a mechanism for overload control raises a number of I

questions, such as how controller parameters should beoftware Availability

tuned. We have relied mainly on a heuristic approach torhe SEDA software, related papers, and other documen-
controller design, though more formal, control-theoretictation are available for download frohittp://www.

techniques are possible [32]. Capturing the performances berkeley.edu/"mdw/proj/seda
and resource needs of real applications through detailed

models is an important research direction if control- References

theoretic techniques are to be employed more widely. [1] T. F. Abdelzaher and N. Bhatti. Adaptive content deliv-
The use of per-stage admission control allows the ser- ery for Web server QoS. IRroceedings of International

vice to carefully control the flow of requests through the Workshop on Quality of Serviceondon, June 1999.

system, for example, by only rejecting those requests that[2] T. F. Abdelzaher and C. Lu. Modeling and performance

lead to a bottleneck resource. The downside of this ap- control of Internet servers. Imvited Paper, 39th IEEE

proach is that a request may be rejected late in the pro- Conference on Decision and Contrtﬂydney, Australia,

cessing pipeline, after it has consumed significant re- ~ December 2000.

sources in upstream stages. There are several ways t3] Acme Labs. thttpd: Tiny/Turbo/Throttling HTTP Server.

address this problem. Ideally, request classification and ~ http://www.acme.com/software/thttpd/

load shedding can be performed early; in Arashi, re- [4] Apache Software Foundation. The Apache Web server.

quests are classified in the first stage after they have been httP//www.apache.org

read from the network. Another approach is for a stage’s [5] G. ?a_f;ga, J-t(Cj?-IMOQUL anr? P. DrlfJSCBe’\L-IXA %Cﬂlablg and

overload controller to affect the admission-control policy explicit event delivery mechanism 1or UINLA. Hroceed-

of upstream stages, causing requests to be dropped be- ',\')Igigéhecisgmé %ggg Annual Technical Conference

fore encountering a bottleneck. This paper has focused _ Y A ') i

on stage-local reactions to overload, though a global ap-18] P Bhol, S. Ramanathan, and S. Singhal. Web2K: Bring-

. ;) ing QoS to Web Servers. Technical Report HPL-2000-61,
proach is also feasible in the SEDA framework. Hg Sabs, May 2000. P

Our approach to overload.management is basgd 071 s. Chandra, C. S. Ellis, and A. Vahdat. Differentiated
adaptive admission control using “external” observations multimedia Web services using quality aware transcod-
of stage performance. This approach uses no knowledge ing. In Proceedings of IEEE INFOCOM 200March
of the actual resource-consumption patterns of stages in ~ 2000.
an application, but is based on the implicit connection [8] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
between request admission and performance. This does Schwartz, and K. J. Worrell. A hierarchical Internet ob-
not directly capture all of the relevant factors that can I€ct cache. IrProceedings of the 1996 USENIX Annual
drive a system into overload. For example, a memory- lechnical Conferenceages 153-163, January 1996.
intensive stage (or a stage with a memory leak) can lead![9] tt'élﬁr?%]oasngvsér’\gc\)/t\}zgastg/ ;gsﬁgégggﬁqd ;’Voeff:céaEdECOH-
to VM thras_hmg_even with a very Io_w request-admlssmn INFOCOM 2002 New York, June 2002, 9
rate. One direction for future work is to inform the over- o
load control mechanism with more direct measurement$l0] X. Chen, H. Chen, and P. Mohapatra. An admission con-
of per-stage resource consumption. We have investigated trol scheme for predictable server response time for Web

; T . . ; accesses. lProceedings of the 10th World Wide Web
one step in this direction, a system-wide resource moni- conferenceHong Kong, May 2001.

tor capable of signaling stages when resource usage (e'?ltL] L. Cherkasova and P. Phaal. Session based admission
memory availability or CPU utilization) meets certain control: A mechanism for improving the performance of
conditions. In this model, stages receive system-wide an overloaded Web server. Technical Report HPL-98-
overload signals and use the information to voluntarily 119, HP Labs, June 1998.
reduce their resource consumption. [12] Y. Diao, N. Gandhi, J. Hellerstein, S. Parekh, and
We have presented an approach to overload control ~ D. Tilbury. Using MIMO feedback control to enforce
for dynamic Internet services, based on adaptive, per- Ro'écc'ﬁz @;é”;‘eerrr\fe'?telgrgnc‘ztgg?nV‘gtgf‘i‘ﬁg';\‘l’g:\',‘agrlioothe
stage admission control. In this approach, the system e Management Sym%osium ZOBRJrence,p
actively observes application performance and tunes the i3y April 2002.

admission rate of each stage to attempt to meet a 90t 13] P. Druschel and G. Banga. Lazy Receiver Processing

percentile response time target. \We have presented ex- (| rp): A network subsystem architecture for server sys-

tensions of this approach that perform class-based ser- tems. InProceedings of the Second USENIX Symposium
vice differentiation as well as application-specific ser- on Operating Systems Design and Implementati®96.

[14] S. Floyd and V. Jacobson. Random early detection gatef32] S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury,

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

ways for congestion avoidancEEEE/ACM Transactions
on Networking1(4):397—-413, August 1993.

A. Fox and E. A. Brewer. Harvest, yield and scalable
tolerant systems. |Rroceedings of the 1999 Workshop
on Hot Topics in Operating Systeniio Rico, Arizona,
March 1999.

A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and

P. Gauthier. Cluster-based scalable network services. 1ti34]

Proceedings of the 16th ACM Symposium on Operating
Systems Principlest.-Malo, France, October 1997.

S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for Inter-
net service construction. IRroceedings of the Fourth
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2000pctober 2000.

R. lyer, V. Tewari, and K. Kant. Overload control mech-

(33]

(35]

anisms for Web servers. IWorkshop on Performance [36]

and QoS of Next Generation Networkéagoya, Japan,
November 2000.

H. Jamjoom, J. Reumann, and K. G. Shin. QGuard: Pro-

tecting Internet servers from overload. Technical Report[37]

CSE-TR-427-00, University of Michigan Department of
Computer Science and Engineering, 2000.

V. Kanodia and E. Knightly. Multi-class latency-bounded
Web services. IiProceedings of IEEE/IFIP IWQoS 2000
Pittsburgh, PA, June 2000.

D. Katabi, M. Handley, and C. Rohrs. Internet conges-
tion control for future high bandwidth-delay product en-
vironments. InProceedings of ACM SIGCOMM 2002
Pittsburgh, PA, August 2002.

S. Keshav. A control-theoretic approach to flow con-
trol. In Proceedings of ACM SIGCOMM 199Reptember
1991.

W. LeFebvre. CNN.com: Facing a world crisis. Invited
talk at USENIX LISA01, December 2001.

K. Li and S. Jamin. A measurement-based admission-
controlled Web server. IRroceedings of IEEE Infocom [
200Q Tel-Aviv, Israel, March 2000.

C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. A feed-
back control approach for guaranteeing relative delays in
Web servers. INEEE Real-Time Technology and Appli-
cations SymposiupTaipei, Taiwan, June 2001.

C. Lu, J. Stankovic, G. Tao, and S. Son. Design and
evaluation of a feedback control EDF algorithm.Rro-
ceedings of the 20th IEEE Real-Time Systems Symposium
Phoenix, Arizona, December 1999.

MySQL AB. MySQL. http://www.mysgl.com

National Laboratory for Applied Network Research.
The Squid Internet object cache. http://www.
squid-cache.org

K. Ogata. Modern Control Engineering Prentice Hall,
1997.

D. P. Olshefski, J. Nieh, and D. Agrawal. Inferring client
response time at the Web server.Aroceedings of SIG-
METRICS 2002Marina Del Rey, California, June 2002.

V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. Broceedings of the
1999 USENIX Annual Technical Conferendene 1999.

(38]

(39]

(40]

41]

T. Jayram, and J. Bigus. Using control theory to achieve
service level objectives in performance management. In
Proceedings of the IFIP/IEEE International Symposium
on Integrated Network ManagemerBeattle, WA, May
2001.

C. Partridge. Gigabit Networking Addison-Wesley,
1993.

X. Qie, R. Pang, and L. Peterson. Defensive program-
ming: Using an annotation toolkit to build DoS-resistant

software. InProceedings of the 5th USENIX Symposium

on Operating Systems Design and Implementation (OSDI
2002) December 2002.

R. Rajamony and M. Elnozahy. Measuring client-
perceived response times on the WWW.Rroceedings

of the 3rd USENIX Symposium on Internet Technologies
and Systems (USIT,S)larch 2001.

T. Voigt, R. Tewari, D. Freimuth, and A. Mehra. Ker-
nel mechanisms for service differentiation in overloaded
Web servers. IfProceedings of the 2001 USENIX Annual
Technical Conferengd8oston, June 2001.

J. R. von Behren, E. Brewer, N. Borisov, M. Chen,
M. Welsh, J. MacDonald, J. Lau, S. Gribble, and
D. Culler. Ninja: A framework for network services. In
Proceedings of the 2002 USENIX Annual Technical Con-
ference Monterey, California, June 2002.

M. Welsh. An Architecture for Highly Concurrent, Well-
Conditioned Internet Service®hD thesis, UC Berkeley,
August 2002.

M. Welsh and D. Culler. Overload management as a fun-
damental service design primitive. Rroceedings of the
Tenth ACM SIGOPS European Worksh8pint-Emilion,
France, September 2002.

M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable Internet services. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principle8anff, Canada, October 2001.

Zeus Technology. Zeus Web Servehttp://iwww.
zeus.co.uk/products/ws/

