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Abstract

Sensor networks present a number of novel pro-
gramming challenges for application develop-
ers. Their inherent limitations of computational
power, communication bandwidth, and energy de-
mand new approaches to programming that shield
the developer from low-level details of resource
management, concurrency, and in-network pro-
cessing. We argue that sensor networks should be
programmed at the global level, allowing the com-
piler to automatically generate nodal behaviors
from a high-level specification of the network’s
global behavior.

This paper presents the design of a functional
macroprogramming language for sensor net-
works, called Regiment. The essential data model
in Regiment is based on region streams, which
represent spatially distributed, time-varying col-
lections of node state. A region stream might rep-
resent the set of sensor values across all nodes in
an area or the aggregation of sensor values within
that area. Regiment is a purely functional lan-
guage, which gives the compiler considerable lee-
way in terms of realizing region stream opera-
tions across sensor nodes and exploiting redun-
dancy within the network.

We describe the initial design and implementation
of Regiment, including a compiler that transforms
a macroprogram into an efficient nodal program
based on a token machine. We present a progress-
sion of simple programs that illustrate the power
of Regiment to succinctly represent robust, adap-
tive sensor network applications.
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1 Introduction

A sensor network represents a complex, volatile, resource-
constrained cloud of sensors capable of collaborative sens-
ing and computing. Programming such an entity requires
new approaches to managing energy usage, performing dis-
tributed computation, and realizing robust behavior despite
message and node loss.

One approach is to program the sensor network as a
whole, rather than writing low-level software to drive in-
dividual nodes. Not only does such an approach raise the
level of abstraction for developing novel programs, we ar-
gue that the only way to address the complexity of the un-
derlying substrate is through automatic compilation from a
high-level language. Today, few computer scientists would
doubt the value of high-level languages for programming
individual computers, or even groups of machines con-
nected in a traditional network. We wish to take this ap-
proach to the next level and provide amacroprogramming
environment for a network of sensors that automates the
process of decomposing global programs into complex lo-
cal behaviors.

This paper presents a functional macroprogramming
language for sensor networks, calledRegiment. The es-
sential data model in Regiment is based onregion streams,
which represent spatially distributed, time-varying collec-
tions of node state. The programmer uses these to express
interest in a group of nodes with some geographic, logical,
or topological relationship, such as all nodes withink ra-
dio hops of someanchornode. The corresponding region
stream represents the set of sensor values across the nodes
in question. The operations permitted on region streams
include fold, which aggregates values across nodes in the
region to a particular anchor, andmap, which applies a
function over all values within a single region stream. Op-
erationally, map requires no communication between ele-
ments, whereas fold requires the collapse of data to a single
physical point.

Regiment is apurely functional languagethat does not
permit input, output, or direct manipulation of program
state. Regiment uses monads [19] to indirectly deal time-



varying values. As in other functional language designs,
this approach gives the compiler considerable leeway in
terms of realizing region stream operations across sensor
nodes and exploiting redundancy within the network. The
Regiment compiler transforms a network-wide macropro-
gram into an efficient nodal program based on atoken ma-
chine. A token machine is a simple distributed state ma-
chine model in which nodes perform local sensing and
computation in response to the arrival of named tokens,
which may be received as radio messages or generated in-
ternally.

2 Related Work

We use the term macroprogramming to refer to program-
ming the sensor network as a whole, rather than at the
level of individual nodes. We argue that programming at
this level leads to more concise and robust programs, since
global behavior is specified directly. As an intuition, con-
sider that matrix multiply algorithms are far simpler to state
in terms of matrices and vectors than as parallel programs
implemented in MPI.

For sensor networks, progress in macroprogramming
has largely been domain specific. We have seen: languages
for global-to-local compilation of spatial pattern formation
[21, 17, 8]; Envirotrack [1], which exposes tracked objects
as languageobjects(analogous to the way we expose re-
gions); and, of course, database systems for querying sen-
sor data [32, 18].

2.1 Middleware

There have been many attempts to design programming
paradigms or run-time services to make application pro-
gramming for sensor networks easier. These need not nec-
essarily take a “macro” approach. In fact, many of these
middleware developments are complementary to macro-
programming, and perhaps usable by a macroprogramming
compiler backend. Spatial Programming [7] uses Smart
Messages to provide content-based spatial references to
embedded resources. For example, the programmer may
refer to the first available camera in a given (predefined)
spatial region. Other communication abstractions include
GHT [25], DIFS [12], SPIN [13], DIMENSIONS [11], and
HOOD [31]. Regiment draws on the Abstract Regions [30]
model, which provides efficient communication primitives
within local regionsof the network.

2.2 Amorphous Computing

The Amorphous Computing research effort has pursued the
broad goal of engineering aggregate behaviors for dense
ad-hoc networks (paintable computers, Turing substrates).
Their work focuses on pattern formation, taking inspira-
tion from developmental biology. They demonstrate how
to form coordinate systems [20], arbitrary two and three
dimensional shapes [17], arbitrary graphs of “wires” [8],
and origami-like folding patterns [21]. Yet the Amorphous

Computing effort has not to date provided a model forpro-
grammingrather thanpattern formation. In addition, the
target platforms envisioned by the Amorphous Computing
effort differ significantly from existing wireless sensor net-
works.

2.3 Database approaches

The database community has long taken the view that
declarative programming through a query language pro-
vides the right level of abstraction for accessing, filter-
ing, and processing relational data. Recently, query lan-
guages have been applied to sensor networks, including
TinyDB [18], Cougar [32], and IrisNet [22]. While these
systems provide a valuable interface for efficient data col-
lection, they do not focus on providing general-purpose dis-
tributed computation within a sensor network. For exam-
ple, it is cumbersome to implement arbitrary aggregation
and filtering operators and arbitrary communication pat-
terns using such a query language. We argue that a more
general language is required to fully realize the potential
for global network programming.

There has also been a body of work on extending pro-
gramming languages to deal with database access: database
programming languages or DBPLs. Many types of lan-
guages have been used in this work, including functional
ones. Functional DBPLs include FAD [5] and IPL [2].
Regiment differs from these languages in being explicitely
concerned with: distributed processing, spatial processing,
streaming data, and with the volatility of its substrate—
sensor networks.

2.4 Stream processing languages

Stream processing is an old subject in the study of pro-
gramming languages. Functional Reactive Programming
(FRP) is a recent formulation which uses modern program-
ming language technology (including monads [19] and
type classes [28]) to allow purely functional languages to
be able to deal comfortably with real time events and time-
varying streams. FRP is the inspiration for Regiment’s ba-
sic type system.

Regiment’s problem domain also overlaps with re-
cent work in extending databases to deal with continuous
queries over streaming data, such as STREAM [3], Au-
rora [33], and Medusa [33]. Regiment aims to utilize many
optimization techniques developed in this body of work,
but at the same time Regiment occupies a slightly different
niche—it is not only intrinsicallydistributed(on a volatile
substrate) but explicitelyspatial.

3 The functional macroprogramming ap-
proach

The traditional method of programming sensor networks
is to write a low-level program that is compiled and in-
stalled in each individual sensor. This amounts to a pro-
gramming model consisting of access to sensor data on the



local node, coupled with a message-passing interface to ra-
dio neighbors. In contrast, our macroprogramming model
captures the entirety of the sensor network state as a global
data structure. The changing state of each sensor originates
a stream of data at some point in space. Collectively they
form a global data structure.

To express sensing and communication within local
groups of nodes, region streams encapsulate subsets of the
global network state that can be manipulated by the pro-
grammer as single units. They represent the time-varying
state of a time-varying group of nodes with some geo-
graphic or topological relationship. Communication pat-
terns for data sharing and aggregation can be efficiently
implemented within such local regions [30, 31].

3.1 Why a functional language?

We propose that functional languages are intrinsically more
compatible with distributed implementation over volatile
substrates than are imperative languages. Prominent (call-
by-value) functional languages include Lisp, Scheme and
OCaml. Functional languages have been used to ex-
plore high-level programming for parallel machines—such
as NESL [6] and *LISP [26]—and for distributed ma-
chines [24]. In our system, we get the most benefit from re-
stricting ourselves to apurely functional (effect free), call-
by-need language similar to Haskell [16].

Purely functional languages essentially hide the direct
manipulation of program state from the programmer. In
particular, the program cannot directly modify the value
of variables; rather, all operations must be represented as
functions. Monads [19] allow mutable state to be repre-
sented in a purely functional form. For sensor network ap-
plications, abstracting away the manipulation of state al-
lows the compiler to determine how and where program
state is stored on the volatile mesh of sensor nodes. For
example, to store a piece of data reliably, it may be nec-
essary to replicate it across multiple nodes in some consis-
tent fashion. Using a functional language makes consis-
tency moot; immutable values can be freely replicated and
cached.

Because functions are deterministic and produce no out-
put, computation can be readily migrated or replicated
without affecting program semantics. Another way to state
this is that functional programs supportequational rea-
soning. Program optimization in such a framework can
be cast as semantics-preserving application of general pro-
gram transformations [23].

Regiment has a host of algebraic properties which can
be used together with a static cost model or dynamic profil-
ing information to optimize performance and resource us-
age.

Another advantage of the functional programs is that it
is straightforward to extract parallelism from their manipu-
lation of data. For example, a function that combines data
streams from multiple sensors can be compiled into a form
that efficiently aggregates each data stream within the net-
work. In addition to suchdata paralleloperations, func-

tional programs are implicitly parallel in their evaluation of
function arguments [4]. The compiler can automatically
extract this parallelism and implement it in a variety of
ways, distributing operations across different sensor nodes.

4 The Regiment language
The goal of Regiment is to write complex sensor network
applications with just a few lines of code. In this section
we describe the Regiment language through several exam-
ples. A common application driver for complex coordi-
nation within sensor networks is that of tracking moving
vehicles through a field of sensors each equipped with a
proximity sensor of some kind (e.g., a magnetometer). We
start by showing a simple Regiment program that returns a
series of locations tracking a single vehicle moving through
such a network.

let aboveThresh (p,x) = p > threshold
read node =

(read sensor PROXIMITY node,
get location node)

in centroid (afilter aboveThresh
(amap read world))

We use a syntax similar to Haskell. Function applica-
tions are written asf x y; for example,amap read world

represents the application of theamapfunction with two
arguments:read andworld. One important characteristic
of functional languages is that they allow functions to be
passed as arguments. Here,amaptakes the functionread
as argument, and applies it to every value of the region
streamworld; we will discuss the details shortly.afilter

filters out elements from a region stream that do not match
a given predicate, in this case theaboveThreshfunction.
And centroid is a function that computes the spatial cen-
ter of mass of a set of sensor readings (where each reading
is a scalar value coupled with the(x,y) location of the sen-
sor that generated the reading). We assume that every node
has access to an approximation of its Euclidean location in
real space, though this assumption is not essential to the
Regiment language.

So, this program can be interpreted as follows: a region
stream is created that represents the value of the proximity
sensor on every node in the network; each value is also an-
notated with the location of the corresponding sensor. Data
items that fall below a certainthreshold are filtered out.
Finally, the spatial centroid of the remaining collection of
sensor values is computed to determine the approximate lo-
cation of the object that generated the readings.

4.1 Fundamentals: space and time

Regiment is founded on three abstract polymorphic data
types. Polymorphic types are also calledgenerics, and are
similar in use to C++ templates; they enable generic data
structures to be specialized for use with any particular type
of data element. Below, theα argument to each type con-
structor signifies the particular type that it is specialized to
hold.



• Streamα — represents a value of typeα that changes
continuously over time

• Spaceα — represents a physical space with values of
typeα suspended in it

• Eventα — represents a discrete event that occurs at a
particular point in time and that carries a valueα when
it occurs

The notion of Streams and Events is based on Functional
Reactive Programming [10]. In this model, programs op-
erate on a set of time-varying signals. A signal can change
its behavior on the arrival of an event. In Regiment, signals
become Streams and are used to represent changing sensor
state or network status, Spaces represent the physical distri-
bution of information across a network, and Events notify
the program of meaningful changes to Streams, allowing
triggers.

Because Regiment is a purely functional language, the
Stream, Space, and Event types all describe first-class im-
mutable values. This means that values of these types can
themselves be passed as arguments, returned from func-
tions, and combined in various ways. Semantically, we can
think of each of the three types as having the following
meanings:

• Streamα ≈ Time→ α

• Spaceα ≈ Location→ MultiSetα

• Eventα ≈ ( Time , α)

That is, Streams may be formalized as abstract functions
that map a time to the value at that time. This is not to
say that we would everimplementa Stream object as such.
Similarly, Spaces may be formalized as functions mapping
a location to a set of values existing at that location. Events
simply become tuples containing values paired with the as-
sociated time of their occurrence.

4.2 Areas, Regions, and Anchors

Until now, we have used “region stream” as an umbrella
concept for a changing, distributed chunk of network state.
Now we formalize this notion by introducing Regiment’s
Area and Region types. An Area is a generic data structure
for representing volatile, distributed collections of data. A
Region is a specific kind of Area used to represent the state
of the real, physical network.

We saw before that a Space represents a “snapshot” of
values distributed in space at a particular point in time. But
we would like for those values—as well as the membership
of values in that space—to change over time. To accom-
plish this we introduce the concept of anArea. If we vi-
sualize aSpace Int as a volume with integers suspended
throughout, then anArea Int would be an animated ver-
sion of the same thing. The Area data type is built by using
Stream and Space together:

Areaα = Stream (Spaceα)

Note that, with this type, an Area’s membership and physi-
cal extent may change over time. In fact, this type would al-
low the Area to become an entirely different Space at each
point in time. (But the instability would cripple our im-
plementation.) On the other hand, if Area were defined as
a Space of Streams rather than Stream of Spaces, then its
membership and spatial extent would be fixed but its values
varying. Instead, both vary.

Areas are useful constructs, but they don’t by them-
selves provide an initial foothold into the real world. How
do we make that first Area? In order to refer to the state of
specific sets of nodes in the real world, we define aRegion,
which is anAreaof Nodes. A Node, in turn, is a datatype
representing the state of a sensor node in the network at
some point in time. It allows access to the node’s state,
such as its sensor readings, real world location, and the set
of other nodes that are part of its communication neighbor-
hood. The precise definition of the Node type, along with
its basic operations, are shown in figure 1.

A Region is created as a group of nodes with some re-
lationship to one another such as“all nodes withink radio
hops of nodeN ,” or “all nodes within a circle of radiusr
around positionX.” Regions may be formed in arbitrarily
complex ways: using spatial coordinates, network topol-
ogy, or by arbitrary predicates applied to individual nodes.
Hence, Regions may be non-contiguous in space, and their
membership may vary over time. The goal of a Region is
to get a handle on a group of sensor nodes of interest for
the purpose of localizing sensing, computation, and com-
munication within the network. The special regionworld
represents all nodes in the network.

One can form a Region by identifying a particular node
that acts as the reference point for determining member-
ship in the region: anAnchor. The Anchor also acts as the
“leader” for aggregate operations in a Region, such as com-
bining values from multiple sensors. Note that the specific
node that fulfills the role of Anchor may change over time,
for example, if a node fails or loses connectivity to others
in the Region. Regiment guarantees that the Anchor object
persists across node failures, which may require periodic
leader elections.

Examples of Regiment code for forming various Re-
gions:

• radio neighborhood hops anch:
Forms a Region consisting of all nodes withinhops
radio hops of the given anchor.

• circle radius anch:
Forms a Region consisting of all nodes whose geo-
graphical coordinates are withinradius of anch.

• knearest k anch:
Forms a Region consisting of thek nodes that are
nearestanch.



4.3 Basic operations

Regiment defines a number of basic operations on Streams
and Areas.

smapf stream
amap f area

smapapplies a functionf to every data sample within a
Stream (across time), returning a new Stream. Similarly,
amapapplies a functionf across every datum in the Area
(across space and time).

afold f init area

An Area fold, orafold, is used to aggregate the samples
from each location in the Area to a single value. The func-
tion f is used to combine the values in the Area, with an
initial value of init used to seed the aggregation.afold re-
turns a new Stream representing the aggregated values of
the Area over time. For example,afold (+) 0 area gen-
erates a Stream of the time-varying sum of all values in
area.

afilter p area

An Area filter, orafilter, pares down the elements ofarea
to only those satisfying the predicate functionp. This fil-
tration must be updates dynamically as the values inarea
change over time.

Regiment also has operations for defining and handling
events:

whenp stream
whenAny p area

whenPercentper p area

when constructs an Event which fires when the current
value of a stream satisfies the predicatep. whenAny, on
the other hand, constructs an Event that fires whenever any
single node in an Area matches a predicatep. whenPer-
centis similar towhenAnybut the Event returned only fires
when above a certain percentage of elements in the area
meet the criteria—potentially an expensive (and difficult to
implement) operation.

Using Events, two Streams can be sequenced into a sin-
gle Stream using theuntil function:

until event startstream handler

until switches between Streams. The above call tountil will
produce values fromstartstreamuntil such a time asevent
occurs. At that point, thehandler(a function) is called on
the value attached to the Event occurrence. This handler
function must return a new Stream, that takes over produc-
ing values wherestartstreamleft off.

type Area a = Stream (Space a)
type Region = Area Node
type Anchor = Stream Node

– Node: represents a physical mote in the context of a
– communication network. Provides access to the node
– state as well as the states of “neighbors”.

type Node = (NodeState, [NodeState])

– NodeState: all the relevent information for a
– node: id, location, and a set of sensor values
– (one for each sensor type supported by the node).

type NodeState = (Id, Location, [Sensor])
– Sensor: force all sensor readings to be floats:

type Sensor = (SensorType, Float)
– SensorType: predefined enumeration of sensor kinds.

type SensorType =
PROXIMITY | LIGHT | TEMPERATURE ...

– Function that returns the NodeState of a Node
get nstate :: Node -> NodeState

– Returns the reading for a given SensorType. For
– now we assume all nodes support all SensorTypes.

read nstate ::
SensorType -> NodeState -> Float

– And here are two convenient short-hands:
– Sensing function for Nodes

read sensor typ nd =
read nstate typ (get nstate nd)

– Shorthand for reading location (via GPS, etc)
get location nd =

read sensor LOCATION node

Figure 1: Regiment’s basic data types(along with some
helpful functions.)

4.4 Spatial operations

Along with these basic operators, Regiment provides sev-
eral explicitly spatial operations on Areas. For example:

• sparsify percent area:
Makeareamore sparse. Each value in the Area flips
a biased coin, and stays in the Area with the given
probability. This randomization is only done the first
time a value enters the Area. The sparse Area is not
chaotically recomputed at every time step.sparsify
can be used, for example, to “weed out” nodes from
an overly dense Region.

• cluster area:
Cluster a fragmented Area into multiple Areas, each
of which is guaranteed to be spatially contiguous. The
return type is an Area of Areas.

• flatten area:
Flatten takes an Area of Areas and returns a single
combined Area. This is the inverse ofcluster.

• border area:
Return a Region representing the set of nodes that
form a boundary around the givenarea.



4.5 Example programs

Now we will return to our original example program and
examine it in greater detail. Let us start by defining
centroid using basic Regiment constructs.

– This calcs a weighted avg of vectors.
– Used to find center of sensor readings.

centroid area =
divide (afold accum (0,0) area)

– ’accum’ produces a weighted sum.
– ’wsum’ - sum of weights.
– ’xsum’ - sum of scaled locations.

accum (wsum, xsum) (w,x) =
(w + wsum, x*w + xsum)

– ’divide’ the stream of scaled location
– values by the sum of the weights.
– Backslash defines a function.

divide stream =
smap (\(w,x) -> x/w) stream

The centroid function takes an area as an input and uses
the accum function to fold that area down to a stream of
sums of sensor readings paired with the scaled locations
of each sensor in the region. Thedivide function divides
the sum of scaled locations by the sum of the sensor read-
ings. This effectively calculates the center of mass of the
locations of those sensors, in a way that recomputes auto-
matically over time.

4.5.1 Tracking multiple targets

Using thecluster operation, we can track the location of
multiple targets, assuming that the set of nodes near a given
target do not overlap:

let aboveThresh (p,x) = p > threshold
read node =

(read sensor PROXIMITY node,
get location node)

selected = afilter aboveThresh
(amap read world)

globs = cluster selected
in amap centroid globs

This program returns an Area providing approximate tar-
get locations for each target being tracked. Note that the
number of targets in the Area will vary over time.

4.5.2 Resource efficiency with sentries

As a further refinement, consider a program that only initi-
ates target tracking within the network if any of the nodes
on the periphery of the network initially detect the presence
of a target. This technique can be used to save energy on
the interior nodes of the network, which only need to be
activated once a target enters the boundary.

let aboveThresh (p,x) = p > threshold
read node = (read sensor PROXIMITY node,

get coords node)
selected = afilter aboveThresh

(amap read world)
targets = amap centroid (cluster selected)

sentries = amap read (border world)
event = whenAny aboveThresh sentries
handler ev = targets

in until event nullArea handler

The last line of the program initiates computation using the
until primitive. Until event fires, the program returns an
empty Area (nullArea ). Once a target is detected by any of
the sentries , thenullArea is supplanted bytargets , the
evaluation of which yields a stream of approximate target
locations.

The reader might reasonably be worried that the above
program produces a fragile implementation. If even one
node in the sentry-border dies, might that let a target
through? This depends on the quality of the implementa-
tion of theborder operator. A high quality implementation
will respond to failures and have the border sealed again
in a bounded amount of time. Also, the programmer may
self-insure by making a two layer border as follows:

let sent1 = border world
sent2 = border (subtract world sent1)
thickborder = union sent1 sent2
...

4.5.3 Contour finding

The following program computes thecontourbetween ad-
jacent areas of the network. Sensor readings on one side of
the contour are above a certain threshold, and readings on
the other side are below. The contour is returned as a list of
points lying along the contour.

let mesh = planarize world
nodesAbove =

afilter ((>= threshold) .
(read sensor SENSTYP))

mesh
midpoint nst1 nst2 =

(read nstate LOCATION nst1 +
read nstate LOCATION nst2) / 2

contourpoints node =
let neighborsBelow =

filter ((< threshold) .
(read nstate SENSTYP))

(get neighbors node)
in map (midpoint (get nstate node))

neighborsBelow
all contourpoints =

amap contourpoints nodesAbove
in

afold append all contourpoints

This program works by pruning the communication
graph of the network into an approximately planar form.
It then filters out a region of nodes—abovethresh —with
SENSTYPreading above the threshold; this would be all the
nodes to one side of the contour. Thecontourpoints func-
tion takes a node above the threshold and returns a list of
midpoints between that node and each of its neighborsbe-
low the threshold (on the other side of the contour). Fi-
nally, all countourpointsis aggregated by appending to-
gether all the individual lists of midpoints, thus yeilding
the final countour-line—a Stream of lists of coordinates.



Figure 2:The Regiment Token Machine model.

4.6 Feedback and exception handling

Because behavior of the sensor network is stochastic, the
response from a region during any time period will involve
only a subset of all the nodes that “should” be in that re-
gion. The programmer needs feedback on the quality of
communication with the region in question. Thus thefi-
delity operator.

fidelity area

This operator returns a Stream representing the fidelity of
an area as a number between zero and one (an approxi-
mation based on the number of nodes responding, spatial
density, and estimated message loss).

The programmer will also want feedback about (and
eventually control over) thefrequencyof a Stream.

get frequencystream

allows the programmer to monitor the actual frequency of
a Stream of values.

Thus, by using these two diagnostic streams, the pro-
grammer may set up “exception handlers”. This is accom-
plished by constructing events which fire when fidelity or
frequency falls out of the acceptable range. For example, if
fidelity drops below a certain level, one may want to switch
to a different algorithm.

5 Token Machines
Compiling a global program into node-level code requires
an abstract machine model for the compiler to target. The
goal of this model is to capture only the essential operations
supported by sensor nodes. For this purpose we provide
theToken Machine(depicted in figure 5). It can be thought
of as an intermediate language (IL) between Regiment and
the native language and runtime environment supported by
individual sensor nodes.

5.1 Tokens and Handlers

A program in the Token Machine model consists of a col-
lection of token handlerscoupled with local state defi-
nitions. Each token handler is associated with a token

name and is attached to an atomic task to be executed
by a sensor node upon receiving a token matching that
name. The Token Machine’s concurrency model is similar
to TinyOS [14] in that handler tasks may not be blocked or
preempted, and run to completion. In many ways, the token
machine model is similar to that of Active Messages [27]

Tokens are generated by a node either internally (in re-
sponse to internal state changes, e.g., a timer interrupt) or
by reception of a radio message containing the token iden-
tifier and parameters. The most recently received token of
each name is cached by the machine. Token handlers can
emit new tokens by broadcasting a radio message, orcall
local token handlers. Nodes can alsocountthe number of
times a given token has been received andclear the recep-
tion count for a given token. Thus Token Machines provide
a simple mechanism providing local function calls, remote
invocation, and data storage.

One use of tokens is to implementgradients[9]. A gra-
dient emanates from a specific origin node with an associ-
atedgradient value, which is initialized to zero. Each node
receiving a gradient token rebroadcasts the token after in-
crementing the gradient value; each node retains only the
lowest-numbered gradient value it has received. A gradient
may have an associatedtime-to-live that limits the range
of its propagation. Gradients can be used to implement a
range of interesting communication patterns, for example,
allowing a root node to collect information from all nodes
within some communication radius, or allowing nodes to
estimate their distance from a set of origin points.

In practice, gradients must be refreshed continuously to
maintain themselves in the presence of node and link fail-
ures. The epoch frequency for gradient-refresh drives the
looping behavior of the system. Every epoch, a wave of
tokens moves outward, activating the next step of compu-
tation. Gradients can be seen as a more general form of the
communication model used by directed diffusion [15] and
spanning trees in systems such as TinyDB [18].

5.2 Gradient example: implementing folds

As an example of the use of tokens and gradients, consider
aggregating the values of ak-radio-neighborhood group of
sensors to an anchor node in its center (the Regimentafold
operator). This operation proceeds in two steps: region for-
mation (which may be amortized over multipleafold oper-
ations) and data aggregation. To form the region, the an-
chor emits amembergradient with an initial hopcount of
0 and a time-to-live ofk radio hops. The token handler
for memberevaluates whether the receiving node is within
the region defined by theafold operator; in this case, if the
gradient hopcount is less thank, then that node considers
itself part of the region. Receiving nodes also remember the
node from which they received the lowest hopcount version
of themembertoken; call this the node’sparent. Receiving
nodes then increment the gradient hopcount and relay the
gradient as long as the hopcount is less than the time-to-
live.

Aggregating results back to the anchor is performed



with a second gradient operation, calledreturn. return
takes as arguments a local value to aggregate, as well as
a token naming anaggregation functionthat combines val-
ues as they travel upwards toward the root of themember
gradient. Each interior node attempts to keep track of the
number of children it has. The handler forreturn checks
whether all of the node’s children have responded with their
own return token (using the token’s reception count), up
to some maximum timeout period. Once this condition is
met, thereturn handler combines received values from the
node’s children using the aggregation function and issues a
return to its own parent with the combined value. Thesere-
turn messages include the node’s parent ID so that all other
nodes will ignore its reception.

5.3 Gradient example: leader election

Gradients also make it straightforward to implement dis-
tributed leader election among a group of nodes. All of the
nodes participating in the election emit a gradient named
elect, which includes its local node ID. The token han-
dler on each node remembers the lowest-valued node ID
received so far. When the token is received, if the received
ID is smaller than the previously stored value, the new ID is
rememberedand the gradient token is relayed. Therefore,
all nodes participating in the election initiate gradients, but
only the gradient of the lowest-numbered node will con-
tinue to propagate. The root of this gradient is the leader.

6 Current status

Regiment poses implementation challenges that are both
deep and broad. Presently, we are exploring the feasibility
of the basic Regiment primitives through a highly restricted
subset of the language. This subset eliminates general pur-
pose function application, and forbids free variables within
functions (disallowing closures). Functions may still be de-
fined, but they may only be applied by using the Regiment
primitives afilter , afold, amap, andsmap. We have also
postponed typing issues by making our prototype dynami-
cally typed. We have implemented a prototype of the com-
piler and have demonstrated several example applications
running in simulation; we intend to implement a back end
compiler to generate TinyOS code from the Token Machine
representation, allowing us to test the system on real sensor
nodes.

6.1 Compilation strategy

A program in the restricted language is best visualized as
a dataflow graph; Figure 3 depicts the graph for a simple
program that computes thesmap of a functiong over the
afold of f over a region of nodes defined by a circle around
the point(30, 40). Our compiler generates code for such
a data-flow graph by directly translating eachedgein the
graph into some number of token handlers.

Values in the system are divided intodistributedand
local. Every distributed value corresponds to some phe-
nomena happening in space. Regions and Anchors are dis-

smap g (afold f (0,0) (circle 50 (anchor_at (30,40))))

(30,40)

anchor_at50

circle(0,0)

afold

(function...)

f

(function...)

smap

g

r

a

s

result

Figure 3: A Regiment program represented as a dataflow
graph. Network-distributed values flow along solid edges, and lo-
cal constant values (including functions) flow along dotted edges.

tributed, whereas numbers and functions are local. In fig-
ure 3, edges are either solid or dotted depending on whether
they carry distributed values or local ones.

We standardize an interface among distributed values
such that every distributed value (solid edge) produces at
least aformation token handler and amembershiptoken
handler. The former represents an onus to create that Re-
gion or Anchor—form the circle, do the filtration, elect the
leader—and the latter is a notice that the Area/Anchor is
active and the current node is participating in it.

6.1.1 Example walk-through

The example portrayed in figure 3 has four distributed val-
ues (a, r, s, result) and several local values (f andg and
several numeric constants). Each of the distributed values
generates both a formation and membership token, for ex-
ample,form a andmemba.

Becausea is the only distributed value produced by a
leaf node,form a tokens are seeded into the network ini-
tially. They cause nodes to check their distance from the
targeted Euclidean coordinate,(30, 40). Nodes that are
close enough to that location initiate and participate in a
leader election. The tokenmemba is fired when a node
becomes leader.

Becauser is the next step in the chain beyonda, the han-
dler for thememba token immediately callsform r. Form-
ing r is simple; it just requires emitting a single gradient
with the tokenmembr. As nodes receive themembr token
they call theform s token. (Again, simply because it’s next
in line.) Theform s handler beginsreturning values along
the back-trail of themembr gradient. When they arrive

Ryan Newton
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back at the root, the special return handler callsmembs.
The values has successfully been formed.membs in turn
calls form result, which simply applies the functiong lo-
cally to the streams, and we have our result.

This example was simple—at no point did a primitive
depend on more than one distributed value. But we hope
that it conveys a feeling for the process. It is important to
note also that this simple example uses only a push model
for the data-flow graph. (Leaf nodes push their results
down to the root.) Theuntil primitive makes necessary
use of thepull communication model because it waits for
an Event before starting a Stream. The latter stream must
have some kind of pull exerted on it to prompt it to begin
execution.

7 Future work and Conclusion
Future work will proceed in several directions. Because of
the large gap between Regiment’s semantics and target ar-
chitecture, compiling it is a challenge. We will explore the
possibility of loosening the restrictions on our initial ver-
sion of Regiment, providing more general purpose func-
tionality. We plan to investigate both static and dynamic
optimizations in terms of resource usage and communica-
tion bandwidth requirements for a range of Regiment appli-
cations. We believe that the Token Machine model and the
use of gradients makes it straightforward to realize good
communication locality. We intend to introduce primitives
that allow the user to control tradeoffs between energy, la-
tency, and accuracy [29], which are critical for sensor net-
work application designers to consider.

Our vision is that sensor network applications can be ex-
pressed in a very high-levelmacroprogramminglanguage
that abstracts away the low-level details of sensing, com-
munication, and energy management. We argue that the use
of functional programming languages is essential for cap-
turing data parallelism and enabling the compiler to make
informed decisions about the scheduling and placement of
computation in the sensor network. We have demonstrated
some interesting first steps in this direction through the de-
sign of Regiment and its underlying runtime model, Token
Machines. Regiment provides the ability to programmati-
cally build spatial regions within the network, and use them
for localized sensing, computation, and communication.
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